Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)
=> 2A = 3^120 - 1
=> A = (3 ^120 - 1)/2
b/ 2A + 1 = 27x
<=> 3^120 = 27x
<=> 27^40 = 27x
<=> x = 40
c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)
= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)
= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)
= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5
+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119
= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)
= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)
= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)
= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13
\(B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{99.101}\)
\(B=2.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)
\(B=\dfrac{2}{2}.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}\right)\)
\(B=1.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(B=1.\left(1-\dfrac{1}{101}\right)\)
\(B=1.\dfrac{100}{101}\)
\(B=\dfrac{100}{101}\)
a)\(\dfrac{3}{10}\)-x=\(\dfrac{25}{30}\)-\(\dfrac{4}{30}\)
\(\dfrac{3}{10}-x=\dfrac{7}{10}\)
x = \(\dfrac{3}{10}-\dfrac{7}{10}\)
x=\(\dfrac{-4}{10}\)
b)\(\dfrac{-5}{8}+x=\dfrac{4}{9}-\dfrac{63}{9}\)
\(\dfrac{-5}{9}+x=\dfrac{-59}{9}\)
\(x=\dfrac{-59}{9}-\dfrac{-5}{9}\)
\(x=\dfrac{-64}{9}\)
c)=>2.18=(x-3).(x-3)
=>36=(x-3)\(^2\)
=>6\(^2\)=(x-3)\(^2\)
6= x-3
x=6+3=9
bài 1
\(A=\left(\dfrac{3}{8}+\dfrac{1}{4}+\dfrac{5}{12}\right):\dfrac{7}{8}\)
\(A=\dfrac{9+6+10}{24}:\dfrac{7}{8}=\dfrac{25}{24}.\dfrac{8}{7}=\dfrac{25.1}{3.7}=\dfrac{25}{21}\)
\(B=\dfrac{1}{4}:\left(10,3-9,8\right)-\dfrac{3}{4}\)
\(B=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)
\(B=\dfrac{1}{4}.2-\dfrac{3}{4}\)
\(B=\dfrac{1}{2}-\dfrac{3}{4}=-\dfrac{1}{4}\)
\(M=-\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\)
\(M=-\dfrac{5}{7}\left(-\dfrac{2}{11}+\dfrac{9}{11}\right)+1\dfrac{5}{7}\)
\(M=-\dfrac{5}{7}.\dfrac{7}{11}+\dfrac{12}{7}\)
\(M=-\dfrac{5}{11}+\dfrac{12}{7}=\dfrac{97}{77}\)
\(N=\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2\)
\(N=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3.4}{16}\)
\(N=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{6}{7}-\dfrac{5}{8}=\dfrac{13}{56}\)
a ,mẫu số chung nhỏ nhất là 35
b,mẫu số chung nhỏ nhất là 75
c,mẫu số chung nhỏ nhất là 24
a ,mẫu số chung nhỏ nhất là 35
b,mẫu số chung nhỏ nhất là 75
c,mẫu số chung nhỏ nhất là 24
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
Bài 3 :
a) \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...........+\dfrac{1}{2017.2019}\)
\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+.........+\dfrac{2}{2017.2019}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{2017}-\dfrac{1}{2019}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2019}\)
\(\Leftrightarrow2A=\dfrac{672}{2019}\)
\(\Leftrightarrow A=\dfrac{336}{2019}\)
b) \(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+.........+\dfrac{1}{132}\)
\(\Leftrightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+............+\dfrac{1}{11.12}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+......+\dfrac{1}{11}-\dfrac{1}{12}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{5}{12}\)
1.
Để \(\overline{25a89b}⋮2\Rightarrow b\in\left\{0;2;4;6;8\right\}\)
Để \(\overline{25a89b}\) chia 5 dư 3 \(\Rightarrow b\in\left\{3;8\right\}\)
Để thỏa mãn hai điều kiện trên thì \(b=8\)
Để \(\overline{25a898}⋮9\Rightarrow\left(2+5+a+8+9+8\right)⋮9\Leftrightarrow32+a⋮9\Rightarrow a=4\)
Vậy \(a=4;b=8\); số cần tìm là \(254898\)