K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

\(\left(\dfrac{x+y}{x}-\dfrac{2x}{x-y}\right)\cdot\dfrac{y-x}{x^2+y^2}\)

\(=\dfrac{\left(x+y\right)\left(x-y\right)-2x^2}{x\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}\)

\(=\dfrac{x^2-y^2-2x^2}{x}\cdot\dfrac{-1}{x^2+y^2}\)

\(=\dfrac{-1\left(-x^2-y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{1}{x}\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

a: \(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

d: \(=\dfrac{x^3-1}{x-1}-\dfrac{x^2-1}{x+1}\)

\(=x^2+x+1-x+1=x^2+2\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

a: \(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{-\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{-3}{x-3}\)

b: \(=\dfrac{x+1}{x+2}:\left(\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)^2}\right)\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{\left(x+3\right)^2}{\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}\)

c: \(=\dfrac{x^2-2xy+y^2+x^2+2xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x^2+2xy+y^2}{2xy}\cdot\dfrac{xy}{x^2+y^2}\)

\(=\dfrac{2\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)^2}{x^2+y^2}\cdot\dfrac{1}{2}\)

\(=\dfrac{\left(x+y\right)}{x-y}\)

24 tháng 11 2017

MTC: \(\left(x-y\right)^2\left(x+y\right)^2\)

\(\dfrac{x^2}{\left(x-y\right)^2\left(x+y\right)}-\dfrac{2x^2y^2}{x^4-2x^2y^2+y^4}+\dfrac{y^2}{\left(x^2-y^2\right)\left(x+y\right)}\)

\(=\dfrac{x^2\left(x+y\right)-2xy^2+y^2\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)^2}\)

\(=\dfrac{x^3+x^2y-2xy^2+y^2x-y^3}{\left(x-y\right)^2\left(x+y\right)^2}\)

\(=\dfrac{x^3+x^2y-xy^2-y^3}{\left(x-y\right)^2\left(x+y\right)^2}\)

\(=\dfrac{x^2\left(x+y\right)-y^2\left(x+y\right)}{\left(x-y\right)^2\left(x+y\right)^2}\)

\(=\dfrac{\left(x+y\right)^2\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)^2}\)

\(=\dfrac{1}{x-y}\)

11 tháng 12 2017

a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)

\(=\left(\dfrac{\left(2x+1\right)\left(2x+1\right)}{2x^2-1}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{2x^2-1}\right):\dfrac{4x}{10x-5}\)

\(=\left(\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{2x^2-1}\right):\dfrac{4x}{10x-5}\)

\(=\left(\dfrac{\left(2x+1-2x-1\right)\left(2x+1+2x-1\right)}{2x^2-1}\right):\dfrac{4x}{10x-5}\)

\(=\dfrac{4x}{2x^2-1}.\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{5}{2x+1}\)

b) \(\left(\dfrac{1}{x^2+1}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\left(\dfrac{1}{x^2+1}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{1}{x}+\dfrac{x^2}{x}-\dfrac{2x}{x}\right)\)

\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{x^2-2x+1}{x}\right)\)

\(=\dfrac{\left(x-1\right)^2}{x^2+1}.\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x}{x^2+1}\)

c) d) Tự làm đi mình làm biếng quass >.< ^^

a: \(=\dfrac{x^2+xy-x^2-y^2}{x+y}\cdot\dfrac{x-y+2y}{y\left(x-y\right)}\)

\(=\dfrac{y\left(x-y\right)}{x+y}\cdot\dfrac{x+y}{y\left(x-y\right)}=1\)

b: \(\left(\dfrac{2}{x^2-1}+\dfrac{x^2-3}{3x^2-1}\right):\left[\dfrac{1}{x}-\dfrac{2x\left(x^2-3\right)}{\left(x^2-1\right)\left(3x^2-1\right)}\right]\)

\(=\dfrac{6x^2-2+x^4-4x^2+3}{\left(x^2-1\right)\left(3x^2-1\right)}:\dfrac{\left(x^2-1\right)\left(3x^2-3\right)-2x^2\left(x^2-3\right)}{x\left(x^2-1\right)\left(3x^2-1\right)}\)

\(=\dfrac{x^4+2x^2+1}{\left(x^2-1\right)\left(3x^2-1\right)}\cdot\dfrac{x\left(x^2-1\right)\left(3x^2-1\right)}{3x^4-6x^2+3-2x^4+6x^2}\)

\(=\dfrac{x\left(x^2+1\right)^2}{x^4+3}\)