\(\frac{a}{a+b}+\frac{b}{a-b}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

 = a^2-ab+ba+b^2/(a-b).(a+b)

 = a^2+b^2/a^2-b^2

k mk nha

29 tháng 6 2019

Lời giải :

\(A=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

\(A=\frac{-bc\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-ac\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(A=\frac{-bc\left(b-c\right)-ac\left(c-a\right)-ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Xét tử số :

\(TS=-b^2c+bc^2-ac^2+a^2c-a^2b+ab^2\)

\(=-ab\left(a-b\right)-c^2\left(a-b\right)+c\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(-ab-c^2+ac+bc\right)\)

\(=\left(a-b\right)\left[-a\left(b-c\right)+c\left(b-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Khi đó \(A=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

a) \(\frac{3x}{2x+4}+\frac{x+3}{x^2-4}\)

\(=\frac{3x}{2\left(x+2\right)}+\frac{x+3}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x\left(x-2\right)+2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(=\frac{3x^2-6x+2x+6}{2\left(x^2-4\right)}\)

\(=\frac{3x^2-4x+6}{2\left(x^2-4\right)}\)

15 tháng 12 2017

a) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)

b) \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}=\frac{3+6x}{2x+8}\)

16 tháng 9 2018

Đặt 

\(\Rightarrow\hept{\begin{cases}x=a-b\\y=a-c\\z=b-c\end{cases}}\)

Ta được

\(B=\frac{1}{axy}+\frac{1}{bxz}+\frac{1}{cyz}=\frac{bcz-acy+abx}{abcxyz}\)

\(=\frac{bc\left(b-c\right)-ac\left(a-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{bc\left(b-c\right)-ac\left(a-b+b-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{bc\left(b-c\right)-ac\left(a-b\right)-ac\left(b-c\right)+ab\left(a-b\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{c\left(b-c\right)\left(b-a\right)+a\left(a-b\right)\left(b-c\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(b-c\right)\left(a-b\right)\left(a-c\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{1)}{abc}\)

Vậy ...

10 tháng 11 2016

a/ 

\(\frac{a+b+c}{\left(a+b\right)^2-c\left(a+b\right)}.\frac{2a+2b}{a^2+2ab-c^2+b^2}\)

\(=\frac{a+b+c}{\left(a+b\right)\left(a+b-c\right)}.\frac{2\left(a+b\right)}{\left(a+b+c\right)\left(a+b-c\right)}\)

\(=\frac{2}{\left(a+b-c\right)^2}\)

10 tháng 11 2016

b/ \(\frac{3x+3y}{x^2+y^2-2xy}:\frac{6x+6y}{ax-by+bx-ay}\)

\(=\frac{3\left(x+y\right)}{\left(x-y\right)^2}.\frac{\left(x-y\right)\left(a-b\right)}{6\left(x+y\right)}\)

\(=\frac{a-b}{2\left(x-y\right)}\)

20 tháng 12 2016

a. \(=\frac{x+1}{2.\left(x+3\right)}+\frac{2x+3}{x.\left(x+3\right)}=\frac{x^2+x+4x+6}{2x.\left(x+3\right)}=\frac{x^2+5x+6}{2x.\left(x+3\right)}=\frac{\left(x+2\right).\left(x+3\right)}{2x.\left(x+3\right)}=\frac{x+2}{2x}\)

b. =\(\frac{2.\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x.\left(x+3\right)}=\frac{-2}{x^2}\)

Chắc chắn đúng, mik nhaaaaaa

16 tháng 12 2018

\(\frac{1}{X-1}-\frac{X^3-X}{X^2+1}\left(\frac{1}{X^2-2X+1}+\frac{1}{1-X^2}\right)\)

=\(\frac{1}{X-1}-\frac{X^3-X}{X^2+1}.\frac{X+1+X-1}{\left(X-1\right)^2\left(X+1\right)}\)

=\(\frac{1}{X-1}-\frac{X\left(X^2-1\right)}{X^2+1}.\frac{2X}{\left(X-1\right)^2\left(X+1\right)}\)

16 tháng 12 2018

=\(\frac{1-X}{X^2+1}\)