Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
[(x2-2xy+2xy2).(x+2y)-(x2+4y2).(x-y)]2xy
=( x3 + 2x2y-2x2y-4xy2+2x2y2+4xy3-x3+x2y-4xy2+4y3 )2xy
=2xy(2x2y2-8xy2+4xy3+x2y+4y3)
= 4x3y3-16x2y3+8x2y4+2x3y2+8xy4
Trả lời:
[ ( x2 - 2xy + 2xy2 ) ( x + 2y ) - ( x2 + 4y2 ) ( x - y ) ] 2xy
= [ ( x3 + 2x2y - 2x2y - 4xy2 + 2x2y2 + 4xy3 ) - ( x3 - x2y + 4xy2 - 4y3 ) ] 2xy
= ( x3 + 2x2y - 2x2y - 4xy2 + 2x2y2 + 4xy3 - x3 + x2y - 4xy2 + 4y3 ) 2xy
= ( x2y - 8xy2 + 2x2y2 + 4xy3 + 4y3 ) 2xy
= 2x3y2 - 16x2y3 + 4x3y3 + 8x2y4 + 8xy4
`x/(x+y) + (2xy)/(x^2-y^2) - y(x+y)`
`= (x(x-y))/(x^2-y^2) + (2xy)/(x^2-y^2) - (y(x-y))/(x^2-y^2)`
`= (x^2 - xy + 2xy - xy + y^2)/(x^2-y^2)`
`= (x^2+y^2)/(x^2-y^2)`
\(\dfrac{x}{x+y}+\dfrac{2xy}{x^2-y^2}-\dfrac{y}{x+y}\)
\(=\dfrac{x-y}{x+y}+\dfrac{2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}+\dfrac{2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{x^2-2xy+y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{x^2+y^2}{x^2-y^2}\)
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
a) (x^2+2xy+y^2) : (x+y)
=(x+y)2:(x+y)
=x+y
b) (125x^3+1) : (5x+1)
=(5x+1)(25x2-5x+1):(5x+1)
=25x2-5x+1
c) (x^2-2xy+y^2) : (y-x)
=(x-y)2:(y-x)
=-(x-y)2:(x-y)
=-(x-y)
=-x+y
`@` `\text {Ans}`
`\downarrow`
\(( x + y ) ( x^2 + 2xy + y^2 )\)
`= x(x^2 +2xy + y^2) + y(x^2 + 2xy + y^2)`
`= x^3 + 2x^2y + xy^2 + x^2y + 2xy^2 + y^3`
`= x^3 + 3x^2y + 3xy^2 + y^3`
Ta có: \(\dfrac{y}{x-y}-\dfrac{x^3-xy^2}{x^2+y^2}\cdot\left(\dfrac{x}{x^2-2xy+y^2}-\dfrac{y}{x^2-y^2}\right)\)
\(=\dfrac{y}{x-y}-\dfrac{x\left(x^2-y^2\right)}{x^2+y^2}\cdot\left(\dfrac{x\left(x+y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}-\dfrac{y\cdot\left(x-y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}\right)\)
\(=\dfrac{y}{x-y}-\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\cdot\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)
\(=\dfrac{y}{x-y}-\dfrac{x\cdot\left(x^2+y^2\right)}{\left(x^2+y^2\right)\cdot\left(x-y\right)}\)
\(=\dfrac{y}{x-y}-\dfrac{x}{x-y}\)
\(=\dfrac{y-x}{x-y}=\dfrac{-\left(x-y\right)}{x-y}=-1\)
Ta có:
VT=(x2+y2)2−(2xy)2VT=(x2+y2)2−(2xy)2
=(x2+y2−2xy)(x2+y2+2xy)=(x2+y2−2xy)(x2+y2+2xy)
=(x−y)2(x+y)2=VP=(x−y)2(x+y)2=VP
⇒đpcm⇒đpcm
Bexiu bị j ấy