K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)      \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1\) có bậc là 2.

b)       

\(\begin{array}{l}H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7\\ = \left( {4{x^5} - 4{x^5}} \right) - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\\ =  - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\end{array}\)

Đa thức H có bậc là 4.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)       

\(\begin{array}{l}{x^4} - 3{x^2}{y^2} + 3x{y^2} - {x^4} + 1\\ = \left( {{x^4} - {x^4}} \right) - 3{x^2}{y^2} + 3x{y^2} + 1\\ =  - 3{x^2}{y^2} + 3x{y^2} + 1\end{array}\) 

Bậc của đa thức là 4

b)       

\(\begin{array}{l}5{x^2}y + 8xy - 2{x^2} - 5{x^2}y + {x^2}\\ = \left( {5{x^2}y - 5{x^2}y} \right) + \left( { - 2{x^2} + {x^2}} \right) + 8xy\\ =  - {x^2} + 8xy\end{array}\)

Bậc của đa thức là 2

21 tháng 5 2017

Câu 3 :

( x + 2 ) 2 = 4 - x 2

\(\Leftrightarrow\) ( x + 2 ) 2 = ( 2 - x ) ( 2 + x )

\(\Leftrightarrow\) ( x + 2 ) 2 - ( 2 - x ) ( 2 + x ) = 0

\(\Leftrightarrow\) ( x + 2 ) ( x + 2 - 2 + x ) = 0

\(\Leftrightarrow\) 2x . ( x + 2 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy phương trình có nghiệm x = 0 hoặc x = -2 .

21 tháng 5 2017

phynit bài này đúng không ạ

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

\(\begin{array}{l}P = 5{x^4} - 3{x^3}y + 2x{y^3} - {x^3}y + 2{y^4} - 7{x^2}{y^2} - 2x{y^3}\\ = 5{x^4} + 2{y^4} + \left( { - 3{x^3}y - {x^3}y} \right) + \left( {2x{y^3} - 2x{y^3}} \right) - 7{x^2}{y^2}\\ = 5{x^4} + 2{y^4} - 4{x^3}y - 7{x^2}{y^2}\\Q = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {x^3}\\ = \left( {{x^3} - {x^3}} \right) + \left( {{x^2}y - {x^2}y} \right) + \left( {x{y^2} - x{y^2}} \right)\\ = 0\end{array}\)

Do đó, bậc của đa thức P là 4; đa thức Q không có bậc.

Tại x = 1; y = -2, ta có:

 \(\begin{array}{l}P = 5.{1^4} + 2{(-2)^4} - 4.{1^3}(-2) - 7.{1^2}{(-2)^2}\\=5+2.16-4.(-2)-7.4=5+32+8-28\\=17\end{array}\)

\(Q = 0\)

12 tháng 8 2018

Bài 6:

a) \(x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b) \(5x\left(x-3\right)-x+3=0\)

\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

c) \(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)

\(\Leftrightarrow3x^2-15x-2x-3x^2+2+3x=30\)

\(\Leftrightarrow-14x+2=30\)

\(\Leftrightarrow-14x=28\)

\(\Leftrightarrow x=-2\)

d) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)

\(\Leftrightarrow2x+16=0\)

\(\Leftrightarrow2x=-16\)

\(\Leftrightarrow x=-8\)

12 tháng 8 2018

Em cần gấp bây h ạ :<

* Dạng toán về phép chia đa thức Bài 9.Làm phép chia: a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1) Bài 10: Làm tính chia 1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5....
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9.Làm phép chia:

a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)

Bài 10: Làm tính chia

1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)

Bài 11:

1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5

2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x –x2+ 3 2. B = –x2+ 6x –11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x

Chương II

* Dạng toán rút gọn phân thức

Bài 1.Rút gọn phân thức:a. 3x(1 - x)/2(x-1) b.6x^2y^2/8xy^5 c3(x-y)(x-z)^2/6(x-y)(x-z)

Bài 2: Rút gọn các phân thức sau:a)x^2-16/4x-x^2(x khác 0,x khác 4) b)x^2+4x+3/2x+6(x khác -3) c) 15x(x+y)^3/5y(x+y)^2(y+(x+y) khác 0). d)5(x-y)-3(y-x)/10(10(x-y)(x khác y) 2x+2y+5x+5y/2x+2y-5x-5y(x khác -y) f)15x(x+y)^3/5y(x+y)^2(x khác y,y khác 0)

Bài 3: Rút gọn, rồi tính giá trị các phân thức sau:

a) A=(2x^2+2x)(x-2)^2/(x^3-4x)(x+1) với x=1/2 b)B=x^3-x^2y+xy2/x^3+y^3 với x=-5,y=10

Bài 4;Rút gọn các phân thức sau:

a) (a+b)^/a+b+c b) a^2+b^2-c^2+2ab/a^2-b^2+c^2+2ac c) 2x^3-7x^2-12x+45/3x^3-19x^2+33x-9

2
31 tháng 12 2017

Bài 12:

1) A = x2 - 6x + 11

= (x2 - 6x + 9) + 2

= (x - 3)2 + 2

Ta có: (x - 3)2 ≥ 0 ∀ x

Dấu ''='' xảy ra khi x - 3 = 0 ⇔ x = 3

Do đó: (x - 3)2 + 2 ≥ 2

Hay A ≥ 2

Dấu ''='' xảy ra khi x = 3

Vậy Min A = 2 tại x = 3

2) B = x2 - 20x + 101

= (x2 - 20x + 100) + 1

= (x - 10)2 + 1

Ta có: (x - 10)2 ≥ 0 ∀ x

Dấu ''='' xảy ra khi x - 10 = 0 ⇔ x = 10

Do đó: (x - 10)2 + 1 ≥ 1

Hay B ≥ 1

Dấu ''='' xảy ra khi x = 10

Vậy Min B = 1 tại x = 10

27 tháng 11 2019

Sao bạn KO tách ra cho dễ nhìn

25 tháng 9 2018

1 ) Xét : \(x^2-9=0\)

\(\Leftrightarrow x^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy nghiệm của đ/t trên là : \(\left[{}\begin{matrix}3\\-3\end{matrix}\right.\)

2 ) \(2\left(x-y\right)\left(x-y\right)+\left(2x-y\right)^2-\left(x-y\right)^2\)

\(=2\left(x-y\right)^2+\left(2x-y\right)^2-\left(x-y\right)^2\)

\(=\left(x-y\right)^2+\left(2x-y\right)^2\)

\(=x^2-2xy+y^2+4x^2-4xy+y^2\)

\(=5x^2-6xy+2y^2\)

3 ) \(x-x^2-3=-\left(x^2-x+3\right)=-\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\right)=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\right]=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\forall x\)Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy Max của b/t trên là : \(-\dfrac{11}{4}\Leftrightarrow x=\dfrac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)

\(\begin{array}{l}P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\\ = \left( {8{x^2}{y^2}z - 5{x^2}{y^2}z - 3{x^2}{y^2}z} \right) - 2xyz + 5{y^2}z + {x^2}{y^2}\\ =  - 2xyz + 5{y^2}z + {x^2}{y^2}\end{array}\)

Hạng tử có bậc cao nhất là \({x^2}{y^2}\) có bậc là 2 + 2 = 4 nên bậc của đa thức là 4.

b) Thay \(x =  - 4;y = 2;z = 1\) vào P ta được \(P =  - 2.\left( { - 4} \right).2.1 + {5.2^2}.1 + {\left( { - 4} \right)^2}{.2^2} = 16 + 20 + 64 = 100.\)