Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)
=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)
=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
<=> \(2A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
b) Ta có: \(B=1+4+4^2+...+4^{100}\)
=> \(4B=4+4^2+4^3+...+4^{101}\)
=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)
<=> \(3B=4^{101}-1\)
=> \(B=\frac{4^{101}-1}{3}\)
Tìm x
a.( x - 140 ) : 3 = 27
x - 140 = 27 . 3
x - 140 = 81
x = 221
b.14 - 4 ( x + 1 ) = 10
4 ( x + 1 ) = 14 - 10
4 ( x +1) = 4
x + 1 = 1
x = 0
c. 15 ( 7 - x ) = 15
7 - x = 1
x = 6
d.34 ( x - 3 ) = 0
\(\Rightarrow\) 34 = 0 hoặc x - 3 = 0
1. 34 = 0 ( vô lí )
2. x - 3 = 0 \(\Rightarrow\) x = 3
e. 24 + 6 (3 - x ) = 30
6( 3- x ) = 30 - 24
6( 3 - x ) = 6
3 - x = 1
x = 2
f. x3 + 24 = 51
x3 = 51 - 24
x3 = 27
\(\Rightarrow\)x = 3 ; x = -3
g. ( x- 5 )2 - 5 = 44
( x - 5) 2 = 49
\(\Rightarrow\)x - 5 = 7 hoặc x - 5 = -7
1. x - 5 = 7\(\Rightarrow\)x = 12
2. x - 5 = -7 \(\Rightarrow\)x = -2
h. ( x + 1 )3 - 23 = 4
( x + 1 )3 =27
\(\Rightarrow\) x + 1 = 3 hoặc x + 1 = -3
1. x + 1 = 3\(\Rightarrow\)x = 2
2. x + 1 = -3 \(\Rightarrow\)x = -4
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
Ta có \(A=4^0+4^1+...+4^{99}\)
\(\Rightarrow4A=4^1+4^2+...+4^{100}\)
\(\Rightarrow4A-A=4^{100}-4^0\Rightarrow3A=4^{100}-1\Rightarrow A=\frac{4^{100}-1}{3}\)