K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

Thay x=-2 vào P ta có:
\(P=3x^3-x=3.\left(-2\right)^3-\left(-2\right)=3.\left(-8\right)+2=-24+2=-22\)

19 tháng 4 2017

Gọi A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3

Trước hết ta thu gọn đa thức :

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3

= (– 3x3+ 3x3) + x2 + 2xy + (2y3– y3)

= 0 + x2 + 2xy + y3.

= x2 + 2xy + y3.

Thay x = 5 ; y = 4 vào A ta được :

A = 52+ 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy giá trị biểu thức x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 ; y = 4 bằng 129.

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)

5 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức : \(3\)

Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)

b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)

\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)

`a,` 

`Q(x)=` \(\dfrac{1}{2}x+\dfrac{2}{3}x^3-\dfrac{1}{3}x+\dfrac{5}{2}x^2-\dfrac{2}{3}x^3+1\)

`Q(x)=`\(\left(\dfrac{2}{3}x^3-\dfrac{2}{3}x^3\right)+\dfrac{5}{2}x^2+\left(\dfrac{1}{2}x-\dfrac{1}{3}x\right)+1\)

`Q(x)=`\(\dfrac{5}{2}x^2+\dfrac{1}{6}x+1\)

`b,` Bậc của đa thức: `2`

Hệ số cao nhất: `5/2`

Hệ số tự do: `1`

`c,`

`Q(-6)=`\(\dfrac{5}{2}\cdot\left(-6\right)^2+\dfrac{1}{6}\cdot\left(-6\right)+1\)

`= 5/2*36 -1+1 = 90-1+1=90`

`Q(1)= 5/2*1^2+1/6*1+1 = 5/2+1/6+1=8/3+1=11/3`

`Q(2)=5/2*2^2+1/6*2+1=5/2*4+1/3+1=10+1/3+1=31/3+1=34/3`

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))

 

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

16 tháng 5 2022

đây là thu gọn à bn

 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có: P – Q = x4 + 3x3 – 5x2 + 7x – (-x3 + 4x2 – 2x +1)

= x4 + 3x3 – 5x2 + 7x + x3 - 4x2 - 4x2 + 2x – 1

= x4 + (3x3+ x3 ) + (– 5x2 - 4x2 ) + (7x + 2x ) – 1

= x4 + 4x3 – 9x2 + 9x – 1

3 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức \(3\)

Hệ số cao nhất là \(1\)

\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)

Thay \(x=2\) vào \(B\left(x\right)\)

\(=2^4-2^3+2^2-11.2+10\\ =0\) 

Vậy tại \(x=2\) thì \(B\left(x\right)=0\)