K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2015

Giả sử 5n + 6 và 8n + 7 cung chia hết cho d ( d thuộc N, )

Ta có:

5n + 6 chia hết cho d

8n + 7 chia hết cho d

8.5n + 6 chia hết cho d

5.8n + 7 chia hết cho d

Tính chất phân phối =

40n + 48 chia hết cho d

40n + 35 chia hết cho d

trừ 2 số này cho nhau được

13 chia hết cho d

=> d thuộc Ư( 13 )

=> d thuộc {1; 13 }

6 tháng 4 2018

bạn ơi sửa chỗ 8.5n+6 và 5.8n+7 thành 8.(5n+6) và 5.(8n+7) nha bạn 

27 tháng 8 2015

Giả sử (5n+6,8n+7)=k, k<>2 do 8n+7 lẻ 
=> (5n+6,[(8n+7)-(5n+6)])=k 
=> (5n+6, 3n+1)=k 
=> (2n+5,3n+1)=k 
=> (n-4, 2n+5)=k 
=> (2n-8,2n+5)=k 
> (13,2n+5)=k 

=>k=13 => 2n+5=13m 
n=(13m-5)/2 (*) Vậy với m lẻ, 
Thay vào (*), được ước chung là 13 và 1 
{ thử với m=1,3 ,5 thì n=4,17,60... đúng} 

* =>k=1 
Với m <>(13m-5)/2 và m=(13m-5)/2 với m chẵn thì 2 số 5n+6 và 8n+7 có ước chung là 1

27 tháng 8 2015

Gọi ƯC(5n+6; 8n+7) là d. Ta có:

5n+6 chia hết cho d => 40n+48 chia hết cho d

8n+7 chia hết cho d => 49n+35 chia hết cho d

=> 40n+48-(40n+35) chia hết cho d

=> 13 chia hết cho d

=> d \(\in\)Ư(13)

=> d \(\in\){1; -1; 13; -13}

2 tháng 11 2015

Gọi d là ƯSC của 5n+6 và 8n+7

=> 5n+6 chia hết cho d nên 8(5n+6)=40n+48 cũng chia hết cho d

=> 8n+7 chia hết cho d nên 5(8n+7)=40n+35 cũng chia hết cho d

=> (40n+48) - (40n+35)=13 cũng chia hết cho d => d là ước của 13 => d thuộc {1; 13}

=> ƯSC của 5n+6 và 8n+7 thuộc {1; 13}

2 tháng 11 2015

Gọi ƯC(5n+6;8n+6) là a.

Ta có:5n+6 chia hết cho a => 40+48 chia hết cho a

 8n+7 chia hết cho a =>49+35 chia hết cho a

=>40n+48-(40n+45) chia hết cho a

=>13 chia hết cho a

=>a thuộc Ư(13)

=>a={1;13}

 

b: Gọi d=UCLN(2n+1;3n+1)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UC(2n+1;3n+1)={1;-1}

c: Gọi d=UCLN(75n+6;8n+7)

\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)

\(\Leftrightarrow d=13\)

=>UC(5n+6;8n+7)={1;-1;13;-13}

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

Lời giải:

Gọi $ƯCLN(5n+6, 8n+7)=a$

$\Rightarrow 5n+6\vdots a; 8n+7\vdots a$

$\Rightarrow 8(5n+6)-5(8n+7)\vdots a$

$\Rightarrow 13\vdots a\Rightarrow a=1$ hoặc $a=13$.