Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x = -1 => f(-1) = (-1)3 - a2.(-1) - a - 11 = 0 (x = -1 là nghiệm của f(x))
=> -1 + a2 - a - 11 = 0
=> a2 - a - 12 = 0
=> a2 - 4a + 3a - 12 = 0
=> a(a - 4) + 3(a - 4) = 0
=> (a + 3)(a - 4) = 0
=> \(\orbr{\begin{cases}a+3=0\\a-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}a=-3\\a=4\end{cases}}\)
Vậy ...
\(f\left(-1\right)=-1+a^2-a-11=a^2-a-12\)
f(x) có nghiệm là -1\(\Leftrightarrow a^2-a-12=0\)
\(\Delta=\left(-1\right)^2+4.12=49,\sqrt{\Delta}=7\)
a có 2 sự xác định
\(\orbr{\begin{cases}a=\frac{1+7}{2}=4\\\frac{1-7}{2}=-3\end{cases}}\)
Trả lời :
1) x2+8x+21
= x^2 + 8x + 16 +5
= (x + 4 )^2 +5 lớn hơn hoặc bằng 5
Vậy giá tri nhỏ nhất của biểu thức bằng 5 khi x +4 =0 hay x=-4
2) f(x) = x^3 +x ^2 +x +1 =0
= (x^3 +x ^2) +(x +1) =0
= x^2 (x + 1 ) + (x +1 ) =0
= (x ^2 +1 )(x +1) =0
Xảy ra hai trường hợp :
x^2 +1=0 hoặc x + 1 =0
mà x^2 +1 >0 nên chỉ x + 1 =0 hay x= -1
Câu 3 gợi ý thôi bạn khai triển ra rồi thu gọn lại .
Học tốt
\(\left(5x+3y\right)^2-\left(3y-1\right)\left(3y+1\right)-\left(4-5x\right)^2-10x\left(3y+4\right)\\ =25x^2+9y^2+30xy-\left(9y^2-1\right)-\left(16-40x+25x^2\right)-\left(30xy+40x\right)\\ =25x^2+9y^2+30xy-9y^2+1-16+40x-25x^2-30xy-40x\\ =\left(25x^2-25x^2\right)+\left(9y^2-9y^2\right)+\left(30xy-30xy\right)+\left(40x-40x\right)+\left(1-16\right)\\ =-15\)
\(a,x^4+64=\left(x^4+16x^2+64\right)\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right).\left(x^2+4x+8\right)\)
\(b,x^5+x+1\)
\(=\left(x^2+x+1\right).\left(x^3-x^2+1\right)\)
...
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
a) \(x^4+x^3+x+1\)
\(\left(x^4+x^3\right)+\left(x+1\right)\)
\(x^3\left(x+1\right)\)+(x+1)
(x+1)(\(x^3+1\))
e)\(ax^2+ay-bx^2-by\)
\(\left(ax^2+ay\right)-\left(bx^2+by\right)\)
\(a\left(x^2+y\right)-b\left(x^2+y\right)\)
\(\left(x^2+y\right)\left(a-b\right)\)