Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
b: Xét ΔDCI vuông tại D và ΔHAB vuông tại H có
\(\widehat{C}=\widehat{HAB}\)
DO đó: ΔDCI\(\sim\)ΔHAB
a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:
BC2=AB2+AC2BC2=AB2+AC2
⇔BC2=32+42=25⇔BC2=32+42=25
hay BC=√25=5cmBC=25=5cm
Vậy: BC=5cm
b) Ta có: ID⊥BC(gt)
AH⊥BC(gt)
Do đó: ID//AH(định lí 1 từ vuông góc tới song song)
Xét ΔCAH có ID//AH(cmt)
nên ΔCID∼ΔCAH(định lí tam giác đồng dạng)
hay ΔIDC∼ΔAHC(1)
Xét ΔAHC và ΔBHA có
ˆAHC=ˆBHA(=900)AHC^=BHA^(=900)
ˆHAC=ˆHBAHAC^=HBA^(cùng phụ với ˆCC^)
Do đó: ΔAHC∼ΔBHA(g-g)(2)
Từ (1) và (2) suy ra ΔIDC∼ΔBHA(tính chất bắc cầu)
c) Ta có: AB2=32=9AB2=32=9(3)
Ta có: I là trung điểm của AC(gt)
⇒CI=AI=AC2=42=2cmCI=AI=AC2=42=2cm
Xét ΔABH và ΔCBA có
ˆAHB=ˆCAB(=900)AHB^=CAB^(=900)
ˆBB^ chung
Do đó: ΔABH∼ΔCBA(g-g)
⇒ABCB=AHCA=BHBAABCB=AHCA=BHBA
hay 35=AH4=BH335=AH4=BH3
⇔{AH=3⋅45=2,4cmBH=3⋅35=1,8cm⇔{AH=3⋅45=2,4cmBH=3⋅35=1,8cm
Ta có: HB+HC=BC(H nằm giữa B và C)
hay HC=BC-HB=5-1,8=3,2cm
Ta có: ΔCID∼ΔCAH(cmt)
⇒CICA=CDCHCICA=CDCH
⇔24=CD3,2⇔24=CD3,2
hay CD=2⋅3,24=1,6cmCD=2⋅3,24=1,6cm
Ta có: CD+BD=BC(D nằm giữa B và C)
hay BD=BC-CD=5-1,6=3,4cm
Ta có: BD2−CD2=(3.4)2−(1.6)2=9BD2−CD2=(3.4)2−(1.6)2=9(4)
Từ (3) và (4) suy ra BD2−CD2=AB2
Bài 2:
A B C D H 1
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
A B C H I D
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a: BC=5cm
b: Xét ΔIDC vuông tại D và ΔBHA vuông tại H có
góc C=góc BAH
Do đo: ΔIDC\(\sim\)ΔBHA
a, Xét tg HBA và tgABC:
Có: góc B chung
H=A=90
=> tg HBA đồng dạng ABC (gg)
b, Vì tg BHA đồng dạng tg ABC:
=>AB/HB=BC/AB
=>đpcm.
c, Áp dụng tính chất tia phân giác:
=>AB/AC=BI/IC=>BI/AB=IC/AC
Áp dụng tính chất dãy tỉ số bằng nhau:
BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7
Suy ra: BI=5/7.6=4,3
IC=5/7.8=5,7
Nhớ k nha.
C A B H D 4 3 I
a)xét \(\Delta ABC\) có:
Áp dụng định lí pitago ta có:
\(CB^2=AB^2+AC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{3^2+4^2}=5\)
b)xét \(\Delta ABC\) và \(\Delta ICD\) có
\(\widehat{A}=\widehat{D}=90\)
\(\widehat{C}\) chung
\(\Rightarrow\Delta ABC\sim\Delta ICD\)
chứng minh tương tự ta có \(\Delta ABC\sim\Delta AHC\)
\(\Rightarrow\Delta ACD\sim\Delta AHB\left(\sim\Delta ABC\right)\)
C)Dễ dàng chứng minh DIDI là đường trung bình △AHC△AHC
⇒HD=DC⇒HD=DC
Mặt khác, ta cũng có BD2−CD2=(BD−CD)(BD+CD)=BC.BH=AB2BD2−CD2=(BD−CD)(BD+CD)=BC.BH=AB2 (hệ thức lượng cơ bản)
a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay \(BC=\sqrt{25}=5cm\)
Vậy: BC=5cm
b) Ta có: ID⊥BC(gt)
AH⊥BC(gt)
Do đó: ID//AH(định lí 1 từ vuông góc tới song song)
Xét ΔCAH có ID//AH(cmt)
nên ΔCID∼ΔCAH(định lí tam giác đồng dạng)
hay ΔIDC∼ΔAHC(1)
Xét ΔAHC và ΔBHA có
\(\widehat{AHC}=\widehat{BHA}\left(=90^0\right)\)
\(\widehat{HAC}=\widehat{HBA}\)(cùng phụ với \(\widehat{C}\))
Do đó: ΔAHC∼ΔBHA(g-g)(2)
Từ (1) và (2) suy ra ΔIDC∼ΔBHA(tính chất bắc cầu)
c) Ta có: \(AB^2=3^2=9\)(3)
Ta có: I là trung điểm của AC(gt)
⇒\(CI=AI=\frac{AC}{2}=\frac{4}{2}=2cm\)
Xét ΔABH và ΔCBA có
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{B}\) chung
Do đó: ΔABH∼ΔCBA(g-g)
⇒\(\frac{AB}{CB}=\frac{AH}{CA}=\frac{BH}{BA}\)
hay \(\frac{3}{5}=\frac{AH}{4}=\frac{BH}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}AH=\frac{3\cdot4}{5}=2,4cm\\BH=\frac{3\cdot3}{5}=1,8cm\end{matrix}\right.\)
Ta có: HB+HC=BC(H nằm giữa B và C)
hay HC=BC-HB=5-1,8=3,2cm
Ta có: ΔCID∼ΔCAH(cmt)
⇒\(\frac{CI}{CA}=\frac{CD}{CH}\)
\(\Leftrightarrow\frac{2}{4}=\frac{CD}{3,2}\)
hay \(CD=\frac{2\cdot3,2}{4}=1,6cm\)
Ta có: CD+BD=BC(D nằm giữa B và C)
hay BD=BC-CD=5-1,6=3,4cm
Ta có: \(BD^2-CD^2=\left(3.4\right)^2-\left(1.6\right)^2=9\)(4)
Từ (3) và (4) suy ra \(BD^2-CD^2=AB^2\)