K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cmBài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.a)     Chứng minh: ΔABD = ΔACE. Bài 5: Cho ∆ABC...
Đọc tiếp

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.

Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?

a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cm

Bài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.

a)     Chứng minh: ΔABD = ΔACE.

 

Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.

a)     Chứng minh ∆DBA = ∆DBN. So sánh DA và DN.

b)    Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC

c)     Chứng minh ∆BMC cân.

 

Bài 10: Cho ΔABC vuông tại A, M là trung điểm của BC

a)     Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB.

b)    Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng ΔMAC = ΔMBD

c)     Chứng minh AB // CD.                                   

d)    Chứng minh:

Bài 11: Cho tam giác ABC có BA < BC và

a)Trên BC lấy điểm M sao cho BM = BA. Chứng minh tam giác ABM đều.

b)Tia phân giác góc B cắt AC tại D. Chứng minh: ΔBAD = ΔBMD.

c)Tia MD cắt tia BA tại H, chứng minh ΔDHC cân.

Bài 12 : Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:

a) BD = CE.                                                        

b) Tam giác GDE cân.

c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, G, M thẳng hàng.

d) Cho AB = 8 cm; MB = 5 cm. Tính độ dài AM?

1

2: BC=căn 6^2+8^2=10cm

3:

a: 5cm; 12cm; 9cm

5+12>9; 5+9>12; 12+9>5

=>Bộ ba số này thỏa mãn độ dài 3 cạnh của 1 tam giác

b: 12+16>20; 12+20>16; 20+16>12

=>Bộ ba số này thỏa mãn độ dài 3 cạnh của 1 tam giác

4:

Xét ΔABD và ΔACE có

AB=AC

góc BAD chung

AD=AE
=>ΔABD=ΔACE

10:

a: AB=căn 10^2-6^2=8cm

b: Xét ΔMAC và ΔMDB có

MA=MD

góc AMC=góc DMB

MC=MB

=>ΔMAC=ΔMDB

c: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hbh

=>AB//CD
 

23 tháng 7 2017

a) +Xét tam giác ABD : 
ta có góc B = 60* ,góc BAD = 60* 
mà góc B + góc BAD + ADB = 180* ( tổng 3 góc ) 
=> góc ADB = 60* 
=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm 

ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm 

+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm : 
AB^2 = AH^2 + BH^2 => em tự tính AH nhé 

+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm 
+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm 
AC^2 =AH^2 + HC^2 => AC =13cm

b) AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A

21 tháng 2 2020

a) +Xét tam giác ABD :

ta có góc B = 60* ,góc BAD = 60*

mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )

=> góc ADB = 60*

=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm

ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm

+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :

AB^2 = AH^2 + BH^2 => em tự tính AH nhé

+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm

+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm

AC^2 =AH^2 + HC^2 => tự tính AC           

b) bạn tính AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A

21 tháng 2 2020

Nhớ k đúng cho mk nha

24 tháng 7 2019

Bạn vẽ hình nha

Xét tam giác AHB vuông tại h

\(BH=\sqrt{BA^2-AH^2}\)(Py ta go)

\(\Rightarrow BH=\sqrt{10^2-8^2}=6\)

Xét tam giác AHC vuông tại H 

\(CH=\sqrt{AC^2-AH^2}\)

\(\Rightarrow CH=15\)

\(\Rightarrow BC=21\Rightarrow BC^2=441\)

Xét \(AB^2+AC^2=10^2+17^2=389\)

\(\Rightarrow BC^2\ne AB^2+AC^2\)

Vậy tam giác ABC không là tam giác vuông

16 tháng 6 2017

trả lời 

Hai cạnh góc vuông của một tam giác vuông có độ dài lần lượt bằng 3cm và 4cm.
Độ dài cạnh huyền của tam giác đó bằng.....5 cm.......  cm.

 hc tốt

7 tháng 2 2021

Bạn Chi nói đúng vì ta thấy tỉ số của 2 cạnh góc vuông và cạnh huyền là3,4,5 mà ở đây là 3,5,7.Do đó tam giác ABC không phải là tam giác vuông

Ta có: \(BC^2=7^2=49\)

\(AB^2+AC^2=3^2+5^2=34\)

Vì \(BC^2>AC^2+AB^2\) nên ΔABC không vuông

Vậy: Bạn Chi nói đúng

 

11 tháng 12 2019

Gọi các cạnh tương ứng với các đường cao 3 cm; 4cm; 6 cm là a, b, c ( >0; cm )

Ta có: Diện tích của tam giác là:

\(\frac{1}{2}.3.a=\frac{1}{2}.4.b=\frac{1}{2}.6.c\)

=> \(3a=4b=6c\)

=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)

Độ dài đường cao tỉ lệ nghịch với độ dài cạnh đáy tương ứng => a là cạnh dài nhất

=> b + c - a = 1 

Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{b+c-a}{\frac{1}{6}+\frac{1}{4}-\frac{1}{3}}=\frac{1}{\frac{1}{12}}=12\)

=> a = \(\frac{1}{3}.12=4\)cm 

b = 3 cm 

c = 2 cm

=> Chu vi tam giác là: a + b + c = 4 +   3 + 2 = 9 cm