K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

tứ giác BMCN hay BNMC ? 

5 tháng 9 2016

a, vì góc B bằng góc C ( tam giác ABC cân tại A )

=> góc B = góc C <=> BNMC là hình thang cân

b, Co khi cau b bạn sai đề , phải là : chứng minh BN = MC chứ

8 tháng 8 2020

Góc BEC=góc BFC=90 độ

=>BCEF LÀ TỨ GIÁC NỘI TIẾP

=>Góc AFE=gócC (1)

Tam giác BNC đồng dạng với tam giác BMC(g.c.g)

=>Góc BNC=góc BMC

=>BCMN là tứ giác nội tiếp

=>Góc ANM=góc AMN=góc C (2)

Từ 1 và 2

Có EF song song với MN và góc ANM=góc AMN

=>EMNF là hình thang cân

I don't now

or no I don't

..................

sorry

26 tháng 7 2018

A B C M N

BM, CN là đường trung tuyến  =>  AM = MC;   AN = BN

Tam giác ABC có AM = MC;  AN = BN 

=>  MN là đường trung tuyến tam giác ABC

=>  MN // BC

=>  BNMC là hình thang

mà góc NBC = góc MCB  (gt)

=>  hình thang BNMC là hình thang cân

a: Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

hay BCMN là hình thang

Câu 1: 

Xét ΔABC có 

BM là đường phân giác ứng với cạnh AC

nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\left(1\right)\)

Xét ΔABC có

CN là đường phân giác ứng với cạnh AB

nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)

hay MN//BC

Xét tứ giác BNMC có MN//BC

nên BNMC là hình thang

mà \(\widehat{NBC}=\widehat{MCB}\)

nên BNMC là hình thang cân

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc...
Đọc tiếp

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.

Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.

Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.

a)Chứng minh : IE=IF

b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.

Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân

Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB

a)Chứng minh :DB là phân giác góc ADC

b)Chứng minh : DB vuông góc với BC

0
3 tháng 9 2016

Có: BE là tia pg của ^B(gt)

      CF là tia og của C(gt)

Mà ^B=^C

=> ^ABE=^CBE=^ACF=^BCF

b) Xét ΔABE và ΔACF có:

^A : góc chung

 AB=AC(gt)

^ABE=^ACF(cmt)

=>ΔABE=ΔACF(g..c.g)

=> AE=AF

=>ΔAEF cân tại A

=> \(\widehat{AFE\:}=\frac{180-\widehat{A}}{2}\)               (1)

Có: ΔABC cân tại A(gt)

=> \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\)              (2)

Từ (1)(2) suy ra:

^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị

=>FE//BC

Mà ^B=^C(gt)

=> tứ giác BFEC là ht cân

3 tháng 9 2016

nhanh v