Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |x - 3|2014 ≥ 0 ; |6 + 2y|2015 ≥ 0
=> |x - 3|2014 + |6 + 2y|2015 ≥ 0
Mà để |x - 3|2014 + |6 + 2y|2015 ≤ 0 <=> |x - 3|2014 = 0 ; |6 + 2y|2015 = 0
=> x = 3 và y = - 3
Vậy x = 3 và y = - 3
d: =>x+5=0 và 3-y=0
=>x=-5 hoặc y=3
e: =>x-2=0 và y+1=0
=>x=2 và y=-1
a)
(x+2)2+(y-3)2+(z-2)2=0
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\\\left(z-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=3\\z=2\end{cases}}}\)
Vậy...
b)
(x-3).y-x=5
xy - 3x - x = 5
xy - 4x = 5
x(y - 4) = 5 = 1.5 = (-1).(-5)
TH1:
\(\Rightarrow\hept{\begin{cases}x=1\\y-4=5\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=9\end{cases}}}\)
TH2:
\(\Rightarrow\hept{\begin{cases}x=5\\y-4=1\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=5\end{cases}}}\)
TH3:
\(\Rightarrow\hept{\begin{cases}x=-1\\y-4=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)
TH4:
\(\Rightarrow\hept{\begin{cases}x=-5\\y-4=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}}\)
Vậy...
Vì (2x - 1)2008 \(\ge\) 0 với mọi x
(y - \(\frac{2}{5}\))2008 \(\ge\) 0 với mọi y
|x + y - z| \(\ge\) 0 với mọi x; y ;z
=> (2x-1)2008+(y-\(\frac{2}{5}\))2008+|x+y-z| \(\ge\) 0 với mọi x; y ;z
Để (2x-1)2008+(y-\(\frac{2}{5}\))2008+|x+y-z| = 0
<=> (2x-1)2008 = 0 ; (y-\(\frac{2}{5}\))2008 = 0 ; |x+y-z| = 0
=> 2x -1 = 0 ; y - \(\frac{2}{5}\)= 0 ; x+ y - z = 0
=> x = \(\frac{1}{2}\) ; y = \(\frac{2}{5}\) ; z = x + y = \(\frac{1}{2}\) + \(\frac{2}{5}\) = \(\frac{9}{10}\)
KL:...
ta có : (x-13+y)2024+(x-6-y)2024=0
do (x-13+y)2024 ≥ 0 ∀ x,y
(x-6-y)2024 ≥ 0 ∀ x,y
⇒ (x-13+y)2024+(x-6-y)2024 ≥ 0
Dấu "=" xảy ra khi x-13+y=0
x-6-y=0
⇔ x+y = 13 (1)
x-y =6 (2)
Từ (1) và (2) suy ra x=9,5 và y = 3,5
Vậy ....