Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúng ta sẽ ghép hai số 7 đầu tiên thành số 77 , sau đó có thể dùng phép toán và dấu ngoặc để tạo một biểu thức đúng có kết quả bằng 56 như sau :
77 - 7 - 7 - 7 = 56
77 - ( 7 + 7 ) - 7 = 56
77 - 7 - ( 7 + 7 ) = 56
77 - ( 7 + 7 + 7 ) = 56 .
a)
Gọi \(y\)là mức phí khi sử dụng dịch vụ Internet,
Gọi \(x\)là số tháng sử dụng dịch vụ.
Hàm số biểu thị mức phí khi sử dụng Internet của công ty Viễn thông A là:
\(480000+5000x=y\)
Hàm số biểu thị mức phí khi sử dụng Internet của công ty Viễn thông B là:
\(90000x=y\)
b) Ta có \(480000+50000x\)\(=90000x\)
\(\Rightarrow40000x=480000\)
\(\Rightarrow x=12\)
Vậy sử dụng trên 12 tháng thì nên chọn dịch vụ công ty A sẽ có lợi hơn.
\(a)\)
Gọi \(m\) là mức phí khi sử dụng dịch vụ Internet
Gọi \(n\)là số tháng sử dụng dịch vụ
Hàm số biểu thị mức phí khi sử dụng Internet của công ty Viễn thông A là:
\(m=48.10^4+5.10^4n\)
Hàm số biểu thị mức phí khi sử dụng Internet của công ty Viễn thông B là:
\(m=9.10^4n\)
\(b)\)
Ta có: \(48.10^4+5.10^4n=9.10^4n\)
\(\Rightarrow n=12\)
Sau 12 tháng thì số tiền hàng tháng phải trả cho công ty A sẽ ít hơn công ty B
Vậy ...
câu 4 :
Gọi số mol Fe và Zn lần lượt là a,b
\(\Rightarrow56a+65b=17,7\)
PTHH : Fe + CuSO4 -> FeSO4 + Cu
a a
Zn + CuSO4 -> ZnSO4 + Cu
b b
\(\Rightarrow n_{Cu}=a+b\)
sau phản ứng thu được chất rắn chính là Cu có khối lượng 19,2g
\(\Rightarrow\)64 ( a + b ) = 19,2 \(\Rightarrow a+b=0,3\)
Ta có : \(\hept{\begin{cases}56a+65b=17,7\\a+b=0,3\end{cases}\Rightarrow\hept{\begin{cases}a=0,2\\b=0,1\end{cases}}}\)
\(\Rightarrow m_{Fe}=0,2.56=11,2g\)\(\Rightarrow\%m_{Fe}=\frac{11,2}{17,7}.100\approx63,28\%\)
\(\Rightarrow\%m_{Zn}\approx36,72\%\)
câu 5 :
A là Na
tính chất cơ bản : Na là kim loại mạnh
+ T/d vs phi kim : 4Na + O2 -> 2Na2O
2Na + Cl2 -> 2NaCl
+ T/d với dd axit : 2Na + H2SO4 -> Na2SO4 + H2
+ t/d với Nước : 2Na + 2H2O -> 2NaOH + H2
+ t/d với dd muối ( Na sẽ t/d với nước trc ) : 2Na + 2H2O -> 2NaOH + H2
2NaOH + CuSO4 -> Na2SO4 + Cu(OH)2
\(\hept{\begin{cases}2x+3y=22\\4x-3y=8\end{cases}}\)( xài phương pháp cộng)
\(\Leftrightarrow\hept{\begin{cases}6x=30\\4x-3y=8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\4x-3y=8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\4\cdot5-3y=8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)
=> PT trên có 1 nghiệm (x;y)=(5;4)
Vì A tác dụng đc với Na2CO3 nên A có gốc -COOH hoặc -OH => A là CH3COOH hoặc C2H5OH
Vì B tác dụng đc với Na nhưng ko làm gqt đổi màu => B là C2H5OH => A là CH3COOH
C là chất ko tan trong nước => C là C6H6
Phản ứng \(2CH_3COOH+Na_2CO_3\rightarrow2CH_3COONa+CO_2+H_2O\)
\(C_2H_5OH+Na\rightarrow C_2H_5ONa+\frac{1}{2}H_2\)
Dạng tổng quát: Với n là các số lẻ lớn hơn hoặc bằng 3 thì \(\frac{1}{n\sqrt{n-2}+\left(n-2\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n-2\right)}\left(\sqrt{n}+\sqrt{n-2}\right)}=\frac{1}{\sqrt{n\left(n-2\right)}.\frac{2}{\sqrt{n}-\sqrt{n-2}}}=\frac{\sqrt{n}-\sqrt{n-2}}{2\sqrt{n\left(n-2\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n-2}}-\frac{1}{\sqrt{n}}\right)\)Áp dụng, ta được: \(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{5}}+...+\frac{1}{121\sqrt{119}+119\sqrt{121}}=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{119}}-\frac{1}{\sqrt{121}}\right)=\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{5}{11}\)Vậy C = 5/11
Xét :\(\frac{1}{\left(a+2\right)\sqrt{a}+a\sqrt{a+2}}=\frac{1}{\sqrt{a}.\sqrt{a+2}\left(\sqrt{a+2}+\sqrt{a}\right)}=\frac{\sqrt{a+2}-\sqrt{a}}{2\sqrt{a}.\sqrt{a+2}}=\frac{1}{2\sqrt{a}}-\frac{1}{2\sqrt{a+2}}\)
Xét:
\(C=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{5\sqrt{3}+3\sqrt{5}}+...+\frac{1}{121\sqrt{119}+119\sqrt{121}}\)
\(=\frac{1}{2}-\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{3}}-\frac{1}{2\sqrt{5}}+\frac{1}{2\sqrt{5}}-\frac{1}{2\sqrt{7}}+...+\frac{1}{2\sqrt{119}}-\frac{1}{2\sqrt{121}}\)
\(=\frac{1}{2}-\frac{1}{2\sqrt{121}}=\frac{1}{2}-\frac{1}{2.11}=\frac{5}{11}\)
Đề bài thiếu : không có 4 điểm nào cùng thuộc 1 đường tròn ( nhỡ n điểm này cùng thuộc 1 đường tròn)
Có n điểm mà ko có 3 điểm nào thẳng hàng luôn tồn tại 2 điểm sao cho n−2 điểm còn lại ∈ cùng một nửa mặt phẳng có bờ là đường thẳng chứa đoạn thẳng có 2 mút là 2 điểm trên
gọi 2 điểm đó là A1,A2 và n−2 điểm còn lại là B1,B2,B3,...,Bn−2
Xét các góc A1BiA2ˆ(i=1,2,3,..,n−2)
luôn tồn tại một góc có số đo lớn hơn hẳn những góc còn lại giả sử là A1BmA2ˆ
khi đó vẽ đường tròn ngoại tiếp TG này
Dễ cm nếu ∃1 điểm nằm trong đường tròn đó gs là Bn thì A1BnA2ˆ>A1BmA2ˆ
=> vô lý vì góc trên là lớn nhất
P/s : Bài náy có thể mở rộng là có thể vẽ 1 đường tròn chứa đúng m điểm với (m≤n)
Trong các khoảng cách từ O đến các cạnh của đa giác, giả sử khoảng cách từ O đến cạnh AB là nhỏ nhất (đó là đường vuông góc OE)
Ta sẽ chứng minh E phải thuộc cạnh AB
Giả sử E nằm ngoài cạnh AB, khi đó OE phải cắt một trong các cạnh của đa giác tại G
Dễ thấy OF<OG<OE nghĩa là điểm O gần cạnh BC hơn cạnh AB
Điều này trái với việc chọn cạnh AB, từ đó ta có điều phải chứng minh
A B E G O F C D
Despite the fact that she performed well, she didn't receive good comments from critics
Despite performing well, she didn't receive good comments from critics
Despite good performance, she didn’t receive good comments from critics.