\(\ge\)3), trong...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2020

Đề bài thiếu : không có 4 điểm nào cùng thuộc 1 đường tròn ( nhỡ n điểm này cùng thuộc 1 đường tròn)

Có n điểm mà ko có 3 điểm nào thẳng hàng luôn tồn tại 2 điểm sao cho n−2 điểm còn lại ∈ cùng một nửa mặt phẳng có bờ là đường thẳng chứa đoạn thẳng có 2 mút là 2 điểm trên

gọi 2 điểm đó là A1,A2 và n−2 điểm còn lại là B1,B2,B3,...,Bn−2

Xét các góc A1BiA2ˆ(i=1,2,3,..,n−2)

luôn tồn tại một góc có số đo lớn hơn hẳn những góc còn lại giả sử là A1BmA2ˆ

khi đó vẽ đường tròn ngoại tiếp TG này

Dễ cm nếu ∃1 điểm nằm trong đường tròn đó gs là Bn thì A1BnA2ˆ>A1BmA2ˆ

=> vô lý vì góc trên là lớn nhất

P/s : Bài náy có thể mở rộng là có thể vẽ 1 đường tròn chứa đúng m điểm với (m≤n)

14 tháng 6 2020

Trong các khoảng cách từ O đến các cạnh của đa giác, giả sử khoảng cách từ O đến cạnh AB là nhỏ nhất (đó là đường vuông góc OE)

Ta sẽ chứng minh E phải thuộc cạnh AB

Giả sử E nằm ngoài cạnh AB, khi đó OE phải cắt một trong các cạnh của đa giác tại G

Dễ thấy OF<OG<OE nghĩa là điểm O gần cạnh BC hơn cạnh AB

Điều này trái với việc chọn cạnh AB, từ đó ta có điều phải chứng minh

A B E G O F C D

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.CMR tồn...
Đọc tiếp

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.

Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)

2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.

CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín

3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.

CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại

4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

5. Cho 7 số nguyên dương khác nhau không vượt quá 1706. 

CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a

1
20 tháng 4 2018

 Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

30 tháng 1 2017

Giải bài dưới.

Trong 2010 điểm không thẳng hàng này luôn tôn tại 2 điểm A,B sao cho 2008 điểm còn lại cùng thuộc một nửa mặt phẳng có bờ là đường thẳng AB.

Ta lần lược nối 2008 điểm còn lại với 2 điểm A, B thì sẽ tạo được 2008 góc: AC1 B, AC2 B,...,AC2008 B.

Vì số góc là hữu hạn nên luôn tồn tại góc AC​ k​ B có số đo lớn nhất. Khi đó đường tròn đi qua 3 điểm đó là đường tròn cần tìm

27 tháng 1 2017

Mình xin đề xuất bài toán tổng quát như sau (à với lại đề bên trên có một lỗi nhỏ xíu):

Cho tam giác \(ABC\) bất kì (ko cần vuông nữa). Đường tròn nội tiếp tâm \(I\)tiếp xúc \(AB,AC\) tại \(P,Q\). Gọi \(F\) là trung điểm \(AC\), và gọi \(d\) là đường trung bình qua \(F\) của tam giác \(ABC\).

Chứng minh: \(d,PQ,BI\) và đường tròn ngoại tiếp tam giác \(QIC\) đồng quy tại một điểm.

-----

P/S: Trước mắt mình xin nói sơ hướng giải quyết, chắc ngày mai nếu bạn vẫn ko làm được thì mình hãy đăng lời giải cụ thể.

Bước 1: \(BI\) cắt đường tròn \(\left(QIC\right)\) tại \(L\). Suy ra \(\widehat{BLC}\) vuông.

Bước 2: Gọi \(M\) là trung điểm \(BC\). Hãy chứng minh \(LM\) song song với \(BC\). Suy ra \(L\in d\).

Bước 3: Hãy chứng minh \(\widehat{AQP}=\widehat{LQC}\). Lưu ý rằng \(\widehat{LQC}=\widehat{LIC}\) là góc ngoài của tam giác \(BIC\), còn \(\widehat{AQP}=\frac{180^o-\widehat{A}}{2}\).

Bước 4: Suy ra \(L\in PQ\) và ta có điều phải chứng minh.

(Mình xin lỗi vì ko biết các điểm \(E,F\) BAN ĐẦU có ý nghĩa gì. Nếu được bạn xem lại đề giúp.)

2 tháng 12 2021

undefined

Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng

Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:

Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh

Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.

Vậy ta có điều phải chứng minh.

2 tháng 12 2021

Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng

Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:

Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh

Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.

Vậy ta có điều phải chứng minh.

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13...
Đọc tiếp

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,

2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm

3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương

4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá\(\frac{\sqrt{3}}{3}cm^2\) và có một góc nhỏ hơn 45o

0
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13...
Đọc tiếp

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,

2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm

3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương

4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá√33 cm2 và có một góc nhỏ hơn 45o

0
27 tháng 5 2018

Xét d là đường thẳng đi qua ít nhất 3 điểm trong 100 điểm. Giả sử có nhiều hơn 1 điểm nằm ngoài d. Xét 2 điểm A, B nằm ngoài d và 2 điểm C, D thuộc d và C, D không thuộc AB. Khi đó 4 điểm A, B, C, D không thỏa mãn đầu bài. Vậy có nhiều nhất 1 điểm nằm ngoài d. Bỏ điểm đó đi ta có 99 điểm thẳng hàng 

26 tháng 3 2018

Gọi d là khoảng cách Ai AJ là 2 điểm xa nhau nhất trong các điểm thuộc tập S

 Giả sử Ak là điểm xa đường Ai Anhất. Ta có tam giác Ai AJAk có diện tích không lớn hơn 1(theo giả thiết). và là tam giác có Smax

 Từ các đỉnh Ai, AJ,Ak ta kẻ các đường thẳng song song với các cạnh của tam giác.

Ta sẽ thu được 4 tam giác con bằng nhau và tam giac lớn nhất

Diện tích tam giác lớn nhất này không quá 4 đơn vị

 Tam giác lớn nhất này chứa cả 8065 điểm đã cho

(dễ chứng minh bằng phản chứng vì S của tam giác Ai AJAmax)

                Vì     

                      8065:4=2016 dư 1

Suy ra tồn tại 1 trong 4 tam giác con chứa không dưới 2017 điểm thuộc tập S thỏa mãn đề bài.

26 tháng 3 2018

100% đúng luôn đó