Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây bạn:V
Là công thức nhé
B=\(1^2+2^2+3^2+...+n^2=\)\(\frac{n+\left(n+1\right)+\left(n+2\right)}{6}\)
C bí ko hẳn nhưng ko có công thuc voi n
\(D=1.2+2.3+3.4+...+\left(n-1\right).n=\frac{\left(n-1\right).n+\left(n+1\right)}{3}\)
\(E=1.2.3+2.3.4+3.4.5+...+\left(n-2\right).\left(n-1\right).n=\frac{\left(n-2\right).\left(n-1\right).n.\left(n+1\right)}{4}\)
k mk nha :v
Cô hướng dẫn nhé
a. 52x-3=5.52=53. Vậy 2x - 3 = 3.
b. \(\frac{30\left(x-5\right)-20x}{100}=5\Rightarrow\frac{10x-150}{100}=5\)
c. Theo công thức tính tổng \(\frac{\left(x+1\right)x}{2}=aaa\Rightarrow x\left(x+1\right)=2a.111\)
Do 111 là số nguyên tố mà a<=9 nên ko tìm được x.
d. Em có thể xem trong bài giảng Tính tổng có quy luật của cô nhé.
a; A =1 + 2 +3+ 4+ 5+ ... +n
Xét dãy số 1; 2; 3; 4;5;...;n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)
Tổng của dãy số trên là: (n + 1).n x 2
A = (n + 1).n:2
B = 1 + 3 + 5+ 7+ ...+ (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1) x n : 2 = n2
Vậy B = n2
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}.\frac{n^2+3n}{2\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n}{4\left(n+1\right)\left(n+2\right)}\)
Bài 1 lớp 7 không làm được thì chết đi
Bài 2:
4B=1.2.3.4+2.3.4.(5-1)+..........+(n-1).n.(n+1).[(n+2)-(n-2)]
4B=1.2.3.4+2.3.4.5-1.2.3.4+.......+(n-1).n.(n+1).(n+2)-(n-2).(n-1).n.(n+1)
4B=(n-1).n.(n+1).(n+2)
B=\(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
5,Ta có
A=1/2+1/2^2+1/2^3+...+1/2^100
2A=1+1/2+1/2^2+1^2/3+...+1/2^99
2A-A=(1+1/2+1/2^2+1^2/3+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)
A=1-1/2^100