Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó:ABDC là hình bình hành
Suy ra: AB//CD
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
mình mới lớp 5 thôi sorry nha
Bạn tự vẽ hình nha
a,\(\Delta AMC\)và \(\Delta DMB\)có :
\(AM=MD\)( M là trung điểm của AD )
\(\widehat{AMC}=\widehat{DMB}\)( Hai góc đối đỉnh )
\(MC=MB\)( M là trung điểm của BC )
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
b, \(\Delta BAM\)và \(\Delta CDM\)có :
\(BM=CM\)( M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( Hai góc đối đỉnh )
\(AM=MD\)( M là trung điểm của AD )
\(\Rightarrow\Delta BAM=\Delta CDM\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)( Hai góc tương ứng )
Mà \(\widehat{ABM}\)và \(\widehat{DCM}\)ở vị trí so le trong
\(\Rightarrow AB//CD\)( Dấu hiệu )
c, Vì \(CF\perp AB\)( Giả thiết )
\(AB//CD\)( Chứng minh trên )
\(\Rightarrow CF\perp CD\)( Quan hệ từ vuông góc đến song song )
d, Bạn tự chứng minh nhé