K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

13 tháng 12 2018

mình mới lớp 5 thôi sorry nha

Bạn tự vẽ hình nha

a,\(\Delta AMC\)và \(\Delta DMB\)có :

\(AM=MD\)( M là trung điểm của AD )

\(\widehat{AMC}=\widehat{DMB}\)( Hai góc đối đỉnh )

\(MC=MB\)( M là trung điểm của BC )

\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)

b,  \(\Delta BAM\)và \(\Delta CDM\)có :

\(BM=CM\)( M là trung điểm của BC )

\(\widehat{AMB}=\widehat{CMD}\)( Hai góc đối đỉnh )

\(AM=MD\)( M là trung điểm của AD )

\(\Rightarrow\Delta BAM=\Delta CDM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)( Hai góc tương ứng )

Mà \(\widehat{ABM}\)và \(\widehat{DCM}\)ở vị trí so le trong

\(\Rightarrow AB//CD\)( Dấu hiệu ) 

c, Vì \(CF\perp AB\)( Giả thiết )

     \(AB//CD\)( Chứng minh trên )

\(\Rightarrow CF\perp CD\)( Quan hệ từ vuông góc đến song song )

d, Bạn tự chứng minh nhé

A C B x M D E F

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
14 tháng 1 2022

em chịu