Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\left ( \frac{9}{11}-0,81 \right )^{2007}=\left ( \frac{81}{99}-\frac{81}{100} \right )^{2007}=\frac{81^{2007}}{99^{2007}.100^{2007}}=\frac{9^{2007}}{1100^{2007}}\)
Thấy rằng \(a<\frac{10^{2007}}{1100^{2007}}<\frac{10^{2007}}{1000^{2007}}=\frac{10^{2007}}{10^{2.2007}}=\frac{1}{10^{4014}}\)
\(\Leftrightarrow a<0,\underbrace{000....0}_{4013}1\)
Điều trên chứng tỏ khi viết $a$ dưới dạng số thập phân thì đằng sau $a$ ít nhất phải có $4013$ chữ số $0$
Sau khi đọc tin nhắn này, hãy share cho 10 người khác trong OLM nếu không sẽ gặp xui xẻo (cái này thật đấy, ông anh mình mới vào viện do bị bỏng nặng vì nước sôi, mình mượn tài khoản OLM của ổng để học thì thấy ổng đang trêu chọc và tỏ vẻ không tin với tin nhắn có nội dung tương tự như vậy, mình sợ nên phải làm, xin lỗi các bạn!)
#)Giải :
Câu 1 :
a)
- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0
- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0
=> c = 0
=> |a| = b2.b = b3
=> b3 ≥ 0
=> b là số nguyên dương
=> a là số nguyên âm
Vậy a là số nguyên dương, b là số nguyên âm và c = 0
Bài 1:
Ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)
=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)
=> ab = 92
Bài 2:
Hữu hạn: -7/16; 2/125; -9/8
Vô hạn tuần hoàn: -5/3; 5/6; -3/11
Chúc bạn học tốt !!!
Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)
\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)
Vậy \(\overline{ab}=92\)
Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)
Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1