K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
                                                                            Bài tập nâng caoBài 1:...
Đọc tiếp

                                                                            Bài tập nâng cao

Bài 1: Tính

a)\(\left\{\left[\left(6,2:0,31-\frac{5}{6}.0,9\right).0,2+0,15\right]:0,2\right\}\left[\left(2+1\frac{4}{11}.0,22:0,1\right).\frac{1}{33}\right]\)

 

b)\(0,4\left(3\right)+0,6\left(2\right).2\frac{1}{2}.\left[\left(\frac{1}{2}+\frac{1}{3}\right):0.5\left(8\right)\right]:\frac{50}{53}\)

c)\(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}\)

Bài 2: Tìm 2 số a,b biết

a)\(\frac{a}{5}=\frac{b}{4};a^2-b^2=1\)

b)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4};a^2-b^2+2c^2=108\)

Bài 3: Cho a/b=c/d chứng minh rằng

a)\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)                          b)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)                          c)\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)

Bài 4: Tìm giá trị nhỏ nhất

a) A=3./1-2x/-5                                    b)\(B=\left(2x^2+1\right)^4-3\)                   c) C= /x-1/2/+(y+2)^2+11

Bài 5: Tìm giá trị lớn nhất trong các biểu thức sau

a) C=-/2-3x/+1/2                                b) D= -3-/2x+4/

Bài 6: Cho bốn số a,b,c,d thảo mãn điểu kiện b^2=ac; c^2=bd. Chứng minh

a^3+b^3+c^3=a/d

b^3+c^3+d^3

2
15 tháng 12 2018
Có ai giải cho mik ko huhuhu, mik gần thi r
4 tháng 2 2020

Dài dễ sợ ghê, có làm thì đến tối mới xong.sory

15 tháng 6 2019

a/ \(\left(\frac{-2}{3}\right)^4:24=\frac{16}{81}:24=\frac{2}{243}\)

b/ \(\left(\frac{3}{4}\right)^3.4^4=\frac{27}{64}.256=108\)

c/ \(\frac{3.0,8^5}{2,4^4}=\frac{3.0,32768}{33,1776}=\frac{0,98304}{33,1776}=\frac{4}{135}\)

d/ \(\frac{3^3-0,9^5}{2,7^4}=\frac{27-0,59049}{53,1441}=\frac{26,40951}{53,1441}=0,4969415231\)

e/\(\left(\frac{-7}{2}\right)^2+\left(\frac{-3}{4}\right)^3.64-\left(\frac{-61}{5}\right)\)

\(=\frac{49}{4}+\frac{-27}{64}.64+\frac{61}{5}\)

\(=12,25-27+12,2\)

\(=-2,55\)

f/ \(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}=\frac{2^{10}}{2^{10}}-\frac{2^5.5^3.3^3}{2^3.3^3.5^2.2^2}\)

                                      \(=1-\frac{2^5.5^3.3^3}{2^5.3^3.5^2}=1-\frac{5}{1}=-4\)

                                       \(\)

chúc bạn học tốt

8 tháng 9 2019

Dùng tích chất kết hợp cho nó lẹ

a/\(\left(\frac{-2}{3}+\frac{3}{7}\right):\frac{4}{5}+\left(\frac{-1}{3}+\frac{4}{7}\right):\frac{4}{5}=\left(\frac{-2}{3}+\frac{3}{7}+\frac{-1}{3}+\frac{4}{7}\right):\frac{4}{5}=\left(-1+1\right):\frac{4}{5}=0\)

b/\(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac{5}{9}:\left(\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}+\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\left(\frac{-3}{22}+\frac{-3}{5}\right)=\frac{-5}{3\left(\frac{1}{22}+\frac{1}{5}\right)}=\frac{-550}{81}\)

8 tháng 9 2019

Mà hình như câu b mình làm sai

b/\(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac{5}{9}:\left(\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\frac{-3}{22}+\frac{5}{9}:\frac{-3}{5}=\frac{5.22}{9.-3}+\frac{5.5}{9.-3}=\frac{-\left(5.22+5.5\right)}{27}=-5\)
 

Bài 1

\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)

\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)

\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)

\(=\frac{9}{25}+\frac{8}{9}-1\)

\(=\frac{56}{225}\)

\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)

\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)

\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)

\(=1:\frac{4}{3}=\frac{3}{4}\)

Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v 

\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)

\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)

\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)

\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)

\(=-\frac{1}{2}\)

10 tháng 2 2020

2.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)

=> x,y,z=

11 tháng 2 2020

1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)

=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)

6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)

Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=> M > 1

Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)

Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> M < 2 (2)

Kết hợp (1) và (2) => 1 < M < 2

=> \(M\notinℤ\)(ĐPCM)