K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

Vì \(\left(x+2y-4\right)^2\ge0\) với mọi x,y

\(\left(2x-3y-1\right)^2\ge0\) với mọi x,y

=>\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)

=>\(\int^{x+2y-4=0}_{2x-3y-1=0}<=>\int^{x+2y=4}_{2x-3y=1}<=>\int^{x=2}_{y=1}\)

 Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn.

30 tháng 12 2015

uh mk sắp làm ra rồi chờ chút nhé

5 tháng 10 2020

a) Ta có \(\hept{\begin{cases}x^2\ge0\forall x\\\left(y-\frac{1}{3}\right)^2\ge0\forall y\end{cases}\Rightarrow}x^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-\frac{1}{3}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{3}\end{cases}}\)

Vậy x = 0 ; y = 1/3 là giá trị cần tìm

b) Ta có : \(\hept{\begin{cases}\left|2x-1\right|\ge0\forall x\\\left|x-3y+2\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|2x-1\right|+\left|x-3y+2\right|\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\x-3y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\-3y=-\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)

Vạy \(x=y=\frac{1}{2}\)là giá trị cần tìm

5 tháng 10 2020

a) Ta có : \(\hept{\begin{cases}x^2\ge0\forall x\\\left(y-\frac{1}{3}\right)^2\ge0\forall y\end{cases}}\Rightarrow x^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x,y\)

Kết hợp với đề bài => Chỉ xảy ra trường hợp x2 + ( y - 1/3 )2 = 0

=> x = 0 ; y = 1/3

b) \(\hept{\begin{cases}\left|2x-1\right|\\\left|x-3y+2\right|\end{cases}\ge}0\forall x,y\Rightarrow\left|2x-1\right|+\left|x-3y+2\right|\ge0\forall x,y\)

Dấu "=" xảy ra khi x = 1/2 ; y = 5/6

c) Ta có(x-1)2 >= 0 với mọi x

(y+3)2>=0 với mọi c

=> (x-1)2+(y+3)2 >= 0 với mọi x,y

Dấu bằng xảy ra khi và chỉ khi

(x-1)2=0 và (y+3)2=0

=> x=1 và y=-3

26 tháng 11 2014

1) ADTCDTSBN, ta có:

 \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4

\(\frac{x}{3}=4\)=> x = 3 . 4 = 12

\(\frac{y}{4}=4\)=> y = 4 . 4 = 16

\(\frac{z}{5}=4\)=> z = 5 . 4 = 20

Vậy x = 12

       y = 16

       z = 20

 

1 tháng 2 2015

x=12

y=16

z=20

21 tháng 7 2019

1, (3^4)^10=81^10

(4^3)^10=64^10

=> 3^40> 4^30(vì 81> 64)

21 tháng 7 2019

1. So sánh :

Ta có : 

340 = ( 34 )10 = 8110

430 = ( 43 )10 = 6410

Vì 8110 > 6410 nên 340 > 430

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

3 tháng 5 2019

Q= (x- 2y+ 3/4xy) - (2x- y+ 3/4xy)

Q = x- 2y+ 3/4xy - 2x2 + y- 3/4xy

Q= (x- 2x2) + (-2y2 + y2) + (3/4xy - 3/4xy)

Q= -x2 - y2 

#Hk_tốt

#Ken'z

3 tháng 5 2019

\(\left(2x^2-y^2+\frac{3}{4}xy\right)+Q=x^2-2y^2+\frac{3}{4}xy\)

\(\Rightarrow Q=x^2-2y^2+\frac{3}{4}xy-2x^2+y^2-\frac{3}{4}xy\)

\(\Rightarrow Q=-x^2-y^2\)

Vậy \(Q=-x^2-y^2\)