Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x+5 chia hết cho 2x+1
mà 2x+1 chia hết cho 2x+1
suy ra 4x+5 - 2.(2x+1) chia hết cho 2x+1
suy ra 4x+5 - 4x - 2 chia hết cho 2x+1
suy ra 3 chia hết cho 2x+1
suy ra 2x+1 thuộc {1;-1;3;-3}
suy ra 2x thuộc {0; -2; 2; -4}
x thuộc {0; -1; 1; -2}
b) x2 +x - 7 chia hết cho x+1
suy ra x. ( x+1) - 7 chia hết cho x+1
mà x.(x+1) chia hết cho x+1
suy ra 7 chia hết cho x+1
x+1 thuộc {1;-1;7;-7}
x thuộc {0; -2; 6; -8}
a) Có 4x+5 chia hết cho 2x+1
--> 2(2x+1)+3 chia hết cho 2x+1
--> 3 chia hết cho 2x+1
--> 2x+1 thuộc Ư(3)={1;3;-1;-3}
Với 2x+1=1 --> x=0
Với 2x+1=3 -->x=1
Với 2x+1=(-1) -->x=(-1)
Với 2x+1=(-3) -->x=(-2)
b) Có x2+x-7 chia hết cho x+1
--> x.x+x-7 chia hết cho x+1
--> x.x+x.1-7 chia hết cho x+1
-->x(x+1)-7 chia hết cho x+1
--> 7 chia hết cho x+1
--> x+1 thuộc Ư(7)={1;7;-1;-7}
Với x+1=1 -->x=0
Với x+1=7 -->x=6
Với x+1=(-1) --> x=(-2)
Với x+1=(-7) --> x=(-8)
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
có cái cc ý, ở đâu thằng Khoa chó kia,,,,hâhahahs mai tao nói vs thầy nhá!!!!bạn bè mà đôi khi phản tí!!!!hìhì,,,vui lắm đây<<<3 ngày nx sẽ có cái đó về con Hương quay bàiiiii!!!Huơng sẽ tl thek nào,,,thật đơn giản là tao chỉ nói nó là''viết đè lên vở mak quay tạm''k ngờ lợi dụng bốc thâtjjj,,,cú ức chế lắm rồi thằng Hậu chó nó lẻo mép làm đến tai con M.Hương là kiểu j chết cả lũ chúng mk,,,,tao cx quay nhưng do hối lộ nên Hậu k mách!!ahahhahhaha,tội nghiệp con Hương bị sui dại ,,.;;vui quá!!!!!!
a, \(21\in B\left(x-3\right)\Leftrightarrow x-3\inƯ\left(21\right)\Leftrightarrow x-3\in\left\{1;3;7;21;-1;-3;-7;-21\right\}\)
\(\Leftrightarrow x\in\left\{4;6;10;24;2;0;-4;-18\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{4;6;10;24;2;0\right\}\)
b, \(1-x\inƯ\left(17\right)\Leftrightarrow1-x\in\left\{1;17;-1;-17\right\}\)
\(\Leftrightarrow x\in\left\{0;-16;2;18\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{0;2;18\right\}\)
c, \(2x+3\in B\left(2x-1\right)\)
\(\Leftrightarrow2x+3⋮2x-1\Leftrightarrow2x-1+4⋮2x-1\Leftrightarrow4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(4\right)\Leftrightarrow2x-1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow x\in\left\{1;\frac{3}{2};\frac{5}{2};0;\frac{-1}{2};\frac{-3}{2}\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{1;0\right\}\)
d, \(x+1\inƯ\left(x^2+x+3\right)\Leftrightarrow x^2+x+3⋮x+1\Leftrightarrow x\left(x+1\right)+3⋮x+1\Leftrightarrow3⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(3\right)\Leftrightarrow x+1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;-4\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{0;2\right\}\)