Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{2464}>2^{2463}=\left(2^3\right)^{821}=8^{821}\)
Có \(8^{821}>7^{821}\)
\(\Rightarrow2^{2464}>7^{821}\)
a)\(4^{72}=\left(4^3\right)^{24}=64^{24}\)
\(8^{48}=\left(8^2\right)^{24}=64^{24}\)
\(\Rightarrow4^{72}=8^{48}\)
a) \(4^{72}=\left(2^2\right)^{72}=2^{144}\)
\(8^{48}=\left(2^3\right)^{48}=2^{144}\)
mà \(2^{144}=2^{144}\)=> \(4^{72}=8^{48}\)
b) \(2^{252}=\left(2^2\right)^{126}=4^{126}\)
mà \(4^{126}< 5^{127}\)=> \(5^{127}>2^{252}\)
3 mũ 39 = ( 3 mũ 13 ) mũ 3 = 1594323 mũ 3
11 mũ 21 = ( 11 mũ 7 ) mũ 3 = 19487171 mũ 3
Ta thấy 1594323 < 19487171 nên => 3 mũ 39 < 11 mũ 21
Mình ko biết đúng hay ko nhưng bn k cho mình nha ! Cực lắm đó ! ~_~
Mình làm giống bạn nhưng không biết có cách nào hay hơn .
a) Cách 1: \(\left(3^2\right)^3=3^{2.3}=3^6\)
\(\left(3^3\right)^2=3^{3.2}=3^6\)
\(\left(3^2\right)^5=3^{2.5}=3^{10}\)
\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)
\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}\)
\(81^{10}=\left(3^4\right)^{10}=3^{4.10}=3^{40}\)
Cách 2: \(\left(3^2\right)^3=9^3\)
\(\left(3^3\right)^2=3^{3.2}=\left(3^2\right)^3=9^3\)
\(\left(3^2\right)^5=9^5\)
\(9^8\)
\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
\(81^{10}=\left(9^2\right)^{10}=9^{2.10}=9^{20}\)
Trả lời :
b)
Ta có : \(5^{28}=5^{2.14}=\left(5^2\right)^{14}=25^{14}< 26^{14}\)
\(\Rightarrow5^{28}< 26^{14}\)
a) \(625^4:25^7\)
\(=\left[25^2\right]^4:25^7\)
\(=25^8:25^7\)
\(=25\)
b)\(\left(100^5-89^5\right).\left(6^8-8^6\right).\left(8^2-4^3\right)\)
\(=\left(100^5-89^5\right).\left(6^8-8^6\right).\left[\left(2^3\right)^2-\left(2^2\right)^3\right]\)
\(=\left(100^5-89^5\right).\left(6^8-8^6\right).\left[2^6-2^6\right]\)
\(=\left(100^5-89^5\right).\left(6^8-8^6\right).0\)
\(=0\)
KO AI TRẢ LỜI THẾ MH TRẢ LỜI LUN !
\(a,4^{72}v\text{à}8^{48}\)
TA CÓ:\(4^{72}=\left(2^2\right)^{72}=2^{144}\)
\(8^{48}=\left(2^3\right)^{48}=2^{144}\)
\(\Rightarrow4^{72}=8^{48}\)
\(b,5^{127}v\text{à}2^{254}\)
TA CÓ:\(2^{252}2^{2\times127}=\left(2^2\right)^{127}=4^{127}\)
\(5^{127}>4^{127}\left(v\text{ì5>4}\right)\)\(5^{127}>4^{127}\left(v\text{ì}5>4\right)\)
\(\Rightarrow5^{127}>2^{254}\)
a) Ta có : 472 = 43.24 = (43)24 = 6424
848 = 82.24 = (82)24 = 6424
Ta thấy : 6424 = 6424 => 472 = 848
b) Ta có : 2254 = 22.127 = (22)127 = 4127
Vì 5 > 4 => 5127 > 2254
a 5.125.625=5.5^3.5^4=5^8
b 10.100.1000=10.10^2.10^3=10^6
c 8^4.16^5.32=2^3^4.2^4^5.2^5=2^12.2^20.2^5=2^37
a) = \(5^1\cdot5^3\cdot5^4=5^{1+3+4}=5^8\)
b) = \(10^1\cdot10^2\cdot10^3=10^{1+2+3}=10^6\)
c) = \(2^{12}\cdot2^{20}\cdot2^5=2^{12+20+5}=2^{37}\)
\(a,27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\) nên \(27^{11}>81^8\)
\(b,625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\) nên \(625^5< 125^7\)