K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

Max chứ không phải Min bạn nhé !

A = -2x2 + 5x - 17

A = -2( x2 - 5/2x + 25/16 ) - 111/8

A = -2( x - 5/4 )2 - 111/8

\(-2\left(x-\frac{5}{4}\right)^2\le0\forall x\Rightarrow-2\left(x-\frac{5}{4}\right)^2-\frac{111}{8}\le-\frac{111}{8}\)

Dấu " = " xảy ra <=> x - 5/4 = 0 => x = 5/4

=> MaxA = -111/8 <=> x = 5/4

B = -x2 + 4x - 5

B = -x2 + 4x - 4 - 1

B = -( x2 - 4x + 4 ) - 1

B = -( x - 2 )2 - 1

\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

=> MaxB = -1 <=> x = 2

C = -4x2 - 4x - 2

C = -( 4x2 + 4x + 1 ) - 1

C = -( 2x + 1 )2 - 1

\(-\left(2x+1\right)^2\le0\forall x\Rightarrow-\left(2x+1\right)^2-1\le-1\)

Dấu " = " xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MaxC = -1 <=> x = -1/2

D = -6 - 8x - 16x2

D = -16( x2 + 1/2x + 1/16 ) - 5

D = -16( x + 1/4 )2 - 5

\(-16\left(x+\frac{1}{4}\right)^2\le0\forall x\Rightarrow-16\left(x+\frac{1}{4}\right)^2-5\le-5\)

Dấu " = " xảy ra <=> x + 1/4 = 0 => x = -1/4

=> MaxD = -5 <=> x = -1/4

15 tháng 8 2020

\(A=-2x^2+5x-17=-2\left(x^2-\frac{5}{2}+\frac{5^2}{4^2}\right)-\frac{111}{8}\)

\(=-2\left(x-\frac{5}{4}\right)^2-\frac{111}{8}\le-\frac{111}{8}\)

Dấu = xảy ra \(< =>-2\left(x-\frac{5}{4}\right)^2=0\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)

Vậy \(Max_A=-\frac{111}{8}\)khi \(x=\frac{5}{4}\)

\(B=-x^2+4x-5=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Dấu = xảy ra \(< =>-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy \(Max_B=-1\)khi \(x=2\)

\(C=-4x^2-4x-2=-\left(4x^2+4x+2\right)\)

\(=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1\)

Dấu = xảy ra \(< =>-\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(Max_C=-1\)khi \(x=-\frac{1}{2}\)

\(D=-6-8x-16x^2=-\left(16x^2+8x+6\right)\)

\(=-\left[\left(4x\right)^2+2.4x+1\right]-5=-\left(4x+1\right)^2-5\le-5\)

Dấu = xảy ra \(< =>-\left(4x+1\right)^2=0\Leftrightarrow4x+1=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy \(Max_D=-5\)khi \(x=-\frac{1}{4}\)

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

12 tháng 6 2019

a/ \(4x^2+4x+11\)

\(=\left(2x^2\right)+2\cdot2x+1-1+11\)

\(=\left(2x+1\right)^2-1+11\)

\(=\left(2x+1\right)^2+10\)

Có :  \(\left(2x+1\right)^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow GTNN\left(4x^2+4x+11\right)=10\)

   Với \(\left(2x+1\right)^2=0;x=-\frac{1}{2}\)

12 tháng 6 2019

\(a,A=4x^2+4x+11\)

\(A=(2x+1)^2+10\)

Do \((2x+1)^2\ge0\Rightarrow(2x+1)^2+10\ge10\forall x\)

\(\Rightarrow Min_a=10\Rightarrow2x+1=0\Rightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = -1/2

15 tháng 6 2018

Tìm GTNN

a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)

b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)

c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

15 tháng 6 2018

@alibaba nguyễn giúp mình với

20 tháng 3 2019

a) Ta có: \(A=4x^2+4x+11\)

        \(\Rightarrow A=4x^2+2x+2x+11\)

        \(\Rightarrow A=2x.\left(2x+1\right)+\left(2x+1\right)+10\)

        \(\Rightarrow A=\left(2x+1\right).\left(2x+1\right)+10\)

        \(\Rightarrow A=\left(2x+1\right)^2+10\)

  Ta lại có: \(\left(2x+1\right)^2\ge0\forall x\inℝ\)

             \(\Rightarrow A\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\)

                        \(\Rightarrow2x+1=0\)

                        \(\Rightarrow2x=-1\)

                        \(\Rightarrow x=\frac{-1}{2}\)

      Vậy \(A_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

        

8 tháng 8 2020

Bài làm:

a) Ta có: \(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy \(Min_A=10\Leftrightarrow x=-\frac{1}{2}\)

b) \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(B=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(B=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(B=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy \(Min_B=-36\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

c) Ta có: \(C=x^2-2x+y^2-4y+7\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

8 tháng 8 2020

a) A = 4x2 + 4x + 11

A = 4( x2 + x + 1/4 ) + 10

A = 4( x + 1/2 )2 + 10

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}^2\right)+10\ge0\)

Dấu " = " xảy ra <=> x + 1/2 = 0 => x = -1/2

Vậy AMin = 10 , đạt được khi x = -1/2

b) B = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

B = [( x - 1 )( x + 6 )][( x + 2 )( x + 3 )]

B = ( x2 + 5x - 6 )( x2 + 5x + 6 )

Đặt a = x2 + 5x 

=> B = ( a - 6 )( a + 6 ) = a2 - 36

\(a^2\ge0\forall a\Rightarrow a^2-36\ge-36\)

Dấu " = " xảy ra <=> a2 = 0 => a = 0

<=> x2 + 5x = 0

<=> x( x + 5 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy BMin = -36 , đạt được khi x = 0 hoặc x = -5

c) C = x2 - 2x + y2 - 4y + 7 

C = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2

C = ( x - 1 )2 + ( y - 2 )2 + 2

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy CMin = 2 , đạt được khi x = 1, y = 2

7 tháng 4 2020

a) \(A=\left(x^2-2.2x+4\right)-3\)

\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)

Vậy minA = -3 khi x = 2

b) \(B=4x^2+4x+11\)

\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)

\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)

Vậy min B = 10 khi x = -1/2

c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)

\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)

Vậy MinC= -36 khi x =0 và x = -5

d) \(D=2x^2+y^2-2xy+2x-4y+9\)

\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)

\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)

\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

Vậy min D = 4 khi x = 1 và y = 3