K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

- 3abc là 3 lần abc à? nếu thế sẽ dư 7

- còn nếu 3abc là số có 4 chứ số có chữ số hàng nghìn là 3 thì:

3abc = 3000 + abc mà abc chia 8 dư 5 còn 3000 chia hết cho 8

vậy 3abc chia 8 vẫn dư 5

14 tháng 1 2016

mấy đại ca cho am 8 tick.em đang cần gấp

7 tháng 4 2018

Theo bài ra ta có:

a= 11x+5

a= 13y+8

\(a+83=11x+5+83\Rightarrow a+83⋮11\)(1)

\(a+83=13y+8+83\Rightarrow a+83⋮13\)(2)

Từ (1) và (2) thì a+83 thuộc BC(11,13)

BCNN(11,13)=143

=> a+83 thuộc B(143)={0;143;286;...}

=> a thuộc {60;203;...}

Vì a là số bé nhất có 3 chữ số nên a= 203.

Vậy số cần tìm là 203.

7 tháng 4 2018

A= 9999931999-5555571997

= 999993499.4+3-555557499.4+1= 999993499.4.9999933-555557499.4.555557= (...1).(...7)-(...1).555557=(...7)-(...7)(...0) chia hết cho 5.

=> A chia hết cho 5

Điền kết quả thích hợp vào chỗ (...):Câu 1:BCNN(20;75;342)=...............................Câu 2:Tìm số tự nhiên a lớn nhất, biết rằng 525 chia hết cho a  và 135 chia hết cho aTrả lời a=Câu 3:Tìm số tự nhiên a nhỏ nhất khác 0, biết rằng a chia hết cho 150 và .a chia hết cho 105Trả lời a=Câu 4:ƯCLN(60;165;315)=Câu 5:Tìm hai số tự nhiên a và b lớn hơn 2 (a < b) biết tích hai số bằng 24 và ước chung lớn nhất của...
Đọc tiếp

Điền kết quả thích hợp vào chỗ (...):

Câu 1:
BCNN(20;75;342)=...............................

Câu 2:
Tìm số tự nhiên a lớn nhất, biết rằng 525 chia hết cho a  và 135 chia hết cho a

Trả lời a=

Câu 3:
Tìm số tự nhiên a nhỏ nhất khác 0, biết rằng a chia hết cho 150 và .a chia hết cho 105
Trả lời a=

Câu 4:
ƯCLN(60;165;315)=

Câu 5:
Tìm hai số tự nhiên a và b lớn hơn 2 (a < b) biết tích hai số bằng 24 và ước chung lớn nhất của chúng bằng 2.
Trả lời: (a;b)=() (Nhập các giá trị cách nhau bởi dấu ";")

Câu 6:
Thêm vào bên trái và bên phải của số 15 mỗi bên một chữ số để được số chia hết cho 72. Số sau khi thêm là 

Câu 7:
Hai số tự nhiên a và b có ƯCLN(a,b)=10 và BCNN(a,b)=400. Khi đó tích a.b=

Câu 8:
Số nhỏ nhất có dạng 123a43b chia hết cho cả 3 và 5 là 

Câu 9:
Cho A là số tự nhiên có ba chữ số nhỏ nhất chia 8 dư 5; chia 10 dư 7, chia 15 dư 12, chia 20 dư 17. Khi đó A = 

Câu 10:
Tìm số tự nhiên có ba chữ số dạng abc , biết: abc - cb = ac
Trả lời: Số cần tìm là 

1
7 tháng 12 2015

Câu 1: 17100

Câu 2: 15

Câu 3:1050

Câu 4; 15

Câu 5: 4;6

Câu 6:1152

Câu 7: 4000

Câu 8:1230435

Câu 9: 117

Câu 10: 109

TÌM SỐ : 1-Tìm x , y để số  1996xy  chia hết 2;5 và 9Tìm a ,bb để số a125b chia hết 2;5 và 92-Tìm m,n để số m340n chia hết cho 45 ( Bị lỗi gạch trên )3-Xác đinj x ,y để phân số x23y /45 là 1 số tự nhiên4-Tìm số có hai chữ số biết số đó chia cho 2 dư 1 ; chia 5 dư 2 và chia hết cho 95-Tìm số tự nhiên bé nhất chia 2 dư 1 ; chia 3 dư 26-A= a459b . Hãy thay a,b bằng những số thích hợp để a chia cho...
Đọc tiếp

TÌM SỐ : 

1-Tìm x , y để số  1996xy  chia hết 2;5 và 9

Tìm a ,bb để số a125b chia hết 2;5 và 9

2-Tìm m,n để số m340n chia hết cho 45 ( Bị lỗi gạch trên )

3-Xác đinj x ,y để phân số x23y /45 là 1 số tự nhiên

4-Tìm số có hai chữ số biết số đó chia cho 2 dư 1 ; chia 5 dư 2 và chia hết cho 9

5-Tìm số tự nhiên bé nhất chia 2 dư 1 ; chia 3 dư 2

6-A= a459b . Hãy thay a,b bằng những số thích hợp để a chia cho 2,cho 5,cho9 đều cho số  dư là 1 

7-ChoB= 5x1y . Hãy thay x,y bằng những số thích hợp để được một số có 4 chữ số khác nhau chia hết cho2,cho3 và cho dư 4

8-Một số nhân với 9 thì được kết quả là 30862a3. Tìm số đó 

9-VẬN DỤNG TÍNH CHẤT CHIA HẾT :                           a)Không làm phép tính , hãy chứng tỏ rằng : Số 171717 luôn chia hết cho 17.                                         b)aa chia hết cho 11.2 _Cho tổng A = 10×10×10×10×10+71. Không thực hiện phép tính , hãy cho biết A có chia hết cho 9 không ? Vì sao ? 

XIN HÃY NGHĨ LÀM NHANH ! KHẨN CẤP !

   

 

0
18 tháng 11 2018

bài 3 là tìm n thuộc N

20 tháng 11 2018

các bn làm bài 3 , 6 thôi

Bài tập 1:a) Tìm các chữ số a, b để  a183b  chia 2, 5 và 9 đều dư 1b) Tìm tất cả các số B =  62xy427  ; biết rằng B chia hết cho 9c) Tìm các chữ số x, y để  1x8y2  chia hết cho 36d) Cho A =  aaaaaaa48  . Tìm a để số đó chia hết cho 24 Bài tập 2:a) Tìm số tự nhiên n biết rằng khi chia 75 cho n thì dư 3, còn chia 64 cho n thì dư 10b) Tìm số tự nhiên n biết rằng khi chia 39 cho n thì dư 4, còn chia...
Đọc tiếp

Bài tập 1:

a) Tìm các chữ số a, b để  a183b  chia 2, 5 và 9 đều dư 1

b) Tìm tất cả các số B =  62xy427  ; biết rằng B chia hết cho 9

c) Tìm các chữ số x, y để  1x8y2  chia hết cho 36

d) Cho A =  aaaaaaa48  . Tìm a để số đó chia hết cho 24

 

Bài tập 2:

a) Tìm số tự nhiên n biết rằng khi chia 75 cho n thì dư 3, còn chia 64 cho n thì dư 10

b) Tìm số tự nhiên n biết rằng khi chia 39 cho n thì dư 4, còn chia 48 cho n thì dư 6

c) Tìm số tự nhiên n biết rằng 1960 và 2002 chia cho a có cùng số dư là 28

 

Bài tập 3:

a) Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 29 dư 5, chia cho 31 dư 28
b) Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 120 dư 58, chia cho 135 dư 88

 

Bài tập 4:

a) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4, và chia hết cho 11

b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11

c) Tìm số tự nhiên có 4 chữ số biết rằng khi chia số đó cho các chữ số 30; 39; 42 thì được số dư lần lượt là 11; 20; 33

d) Tìm số tự nhiên chia cho 4 dư 3, chia cho 17 dư 9, chia cho 19 dư 13 biết rằng số đó lớn hơn 1200 và nhỏ hơn 1300

 

Bài tập 5:

a) Một số tự nhiên chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem số đó chia 91 thì dư bao nhiêu?

b) Một số tự nhiên chia cho 4 dư 3, chia cho 17 dư 9. Nếu đem số đó chia 1292 thì dư bao nhiêu?

 

Bài tập 6: Cho x, y, z là các số nguyên. Chứng minh rằng: Nếu 100x + y + z chia hết cho 21 thì x - 2y + 4z cũng chia hết cho 21

 

Bài tập 7: Chứng minh rằng nếu một số có 3 chữ số mà chữ số hàng chục và hàng đơn vị giống nhau v đồng thời tổng các chữ số của nó chia cho 7 thì số đó chia hết cho 7

 

Bài tập 8: Tìm số tự nhiên có 3 chữ số biết rằng b2 = ac và abc - cba = 405

 

Bài tập 9: Cho ababab là số có 6 chữ số. Chứng minh rằng: ababab là bội của 3

 

Bài tập 10: Chứng tỏ 9815 - 1 = chia hết  cho 97

 

Bài tập 11: Tìm chữ số tận cùng của các số sau:

a) 931909 
b) 571999

c) Cho A = 999993 - 555551997 

Chứng minh A chia hết 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
22 tháng 2 2019

Dài wá bạn ơi

Dãy Fibonacci là dãy vô hạn các số tự nhiên bắt đầu bằng hai phần tử 0 và 1 hoặc 1 và 1, các phần tử sau đó được thiết lập theo quy tắc mỗi phần tử luôn bằng tổng hai phần tử trước nó. Công thức truy hồi của dãy Fibonacci là:

{\displaystyle F(n):=\left\{{\begin{matrix}1\,,\qquad \qquad \qquad \quad \,\ \ \,&&{\mbox{khi }}n=1\,;\ \ \\1,\qquad \qquad \qquad \qquad \,&&{\mbox{khi }}n=2;\ \ \,\\F(n-1)+F(n-2)&&{\mbox{khi }}n>2.\end{matrix}}\right.}{\displaystyle F(n):=\left\{{\begin{matrix}1\,,\qquad \qquad \qquad \quad \,\ \ \,&&{\mbox{khi }}n=1\,;\ \ \\1,\qquad \qquad \qquad \qquad \,&&{\mbox{khi }}n=2;\ \ \,\\F(n-1)+F(n-2)&&{\mbox{khi }}n>2.\end{matrix}}\right.}
16 tháng 10 2020

Để x256y :  2 dư 1

=> y lẻ

=> y \(\in\left\{1;3;5;7;9\right\}\)(1)

Để x256y : 5 dư 3

=> \(y\in\left\{3;8\right\}\)(2)

Từ (1)(2) => y = 3

=> Số mới có dạng là x2563 

Vì x2563 : 9 dư 5

=> x2563 - 5 \(⋮\)9

=> x2558 \(⋮\)9

=> x + 2 + 5 + 5 + 8 \(⋮\)9

=> x + 20 \(⋮\)9

=> x = 7 

Vậy số cần tìm là 72563 

16 tháng 10 2020

(cũng dạng này nhưng làm nghiêm túc)

Chia nó làm 2 dạng : x256y và x256y

Dạng 1 : x256y (x256y có dấu gạch ngang ở trên)

Ở đây có \(9⋮3\).Chia nó làm 3TH.

TH1: \(\div2\)dư 1

Xét,lấy TH2 có \(3\div2\)dư 1.Xét dấu hiệu,TH2 và TH1.Ta chọn y = 3 thỏa mãn TH1 và TH2.

TH3 : Như trên , có \(9⋮3\).Xét dấu hiệu ; TH3 ,ta thấy \(\left(8+4\right)\div9\)dư 3.

ĐK : \(\div9\)dư 5.

Giờ có x + 3 thỏa mãn cả 3TH

Mà x = 5 - 3 + 3 = 5

Vậy số tự nhiên cần tìm là 52563.

Dạng 2 : x256y ( x . 256 . y)

Xét TH1,mà 256 là SC(số chẵn)

Thấy ngay rằng không tìm được số cần tìm.