Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, \(\sqrt{9x-9}-2\sqrt{x-1}=8\left(đk:x\ge1\right)\)
\(< =>\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=8\)
\(< =>\sqrt{9}.\sqrt{x-1}-2\sqrt{x-1}=8\)
\(< =>3\sqrt{x-1}-2\sqrt{x-1}=8\)
\(< =>\sqrt{x-1}=8< =>\sqrt{x-1}=\sqrt{8}^2=\left(-\sqrt{8}\right)^2\)
\(< =>\orbr{\begin{cases}x-1=8\\x-1=-8\end{cases}< =>\orbr{\begin{cases}x=9\left(tm\right)\\x=-7\left(ktm\right)\end{cases}}}\)
d, \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\left(đk:x\ge1\right)\)
\(< =>\sqrt{x-1}+\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=4\)
\(< =>\sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4\)
\(< =>\sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4\)
\(< =>\sqrt{x-1}\left(1+3-2\right)=4< =>2\sqrt{x-1}=4\)
\(< =>\sqrt{x-1}=\frac{4}{2}=2=\sqrt{2}^2=\left(-\sqrt{2}\right)^2\)
\(< =>\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}< =>\orbr{\begin{cases}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{cases}}}\)
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
\(a,\sqrt{x+1}=\sqrt{2-x}\)
\(\Rightarrow x+1=2-x\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
a) \(ĐKXĐ:-1\le x\le2\)
Bình phương 2 vế ta có:
\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )
Vậy \(x=\frac{1}{2}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )
Vậy \(x=65\)
c) \(ĐKXĐ:x\ge1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )
Vậy \(x=5\)
\(\int^{\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+3\sqrt{5}y=21}\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+3\sqrt{5}\left(\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)\right)=21}\)
\(\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+15x-15\sqrt{3}+15=21}\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{\left(2\sqrt{3}+15\right)x=6+15\sqrt{3}}\)
\(\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{x=\frac{6+15\sqrt{3}}{2\sqrt{3}+15}}\Leftrightarrow\int^{y=\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{3}+\sqrt{5}=\sqrt{5}}_{x=\sqrt{3}}\)
Vậy nghiệm của hpt là: \(\int^{x=\sqrt{3}}_{y=\sqrt{5}}\)
a) \(\sqrt{3x-2}-\sqrt{2x+3}=\frac{3x-2-2x-3}{\sqrt{3x-2}+\sqrt{2x+3}}=\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}\)
\(\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}=\frac{x-5}{2}\Leftrightarrow\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{x-5}{2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{1}{2}\right)=0\). Do \(\frac{1}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{1}{2}\ne0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\). Vậy tập nghiệm của pt \(S=\left\{5\right\}\)
b) \(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^3+8}\)
\(\Leftrightarrow x^2\sqrt{2}+8\sqrt{2}=5\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chắc cũng dùng trục căn thức ở mẫu nhưng mình chả biết làm thế nào :v
a, đk \(x\ge\frac{2}{3}\)
\(\sqrt{3x-2}-\sqrt{2x+3}=\frac{x-5}{2}\)
đặt \(\hept{\begin{cases}\sqrt{3x-2}=a\\\sqrt{2x+3}=b\end{cases}\left(a;b\ge0\right)}\)
pt trở thành : \(a-b=\frac{a^2-b^2}{2}\) \(\Leftrightarrow a^2-b^2=2a-2b\)
\(\Leftrightarrow a^2-2a-b^2+2b=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b-1\right)^2=0\)
\(\Leftrightarrow\left(a-1-b+1\right)\left(a-1+b-1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\)
th1 : a - b = 0 <=> a = b hay \(\sqrt{3x-2}=\sqrt{2x+3}\)
\(\Leftrightarrow3x-2=2x+3\Leftrightarrow x=5\left(tm\right)\)
th2 : a + b - 2 = 0 hay \(\sqrt{3x-2}+\sqrt{2x+3}-2=0\)
\(\Leftrightarrow\sqrt{3x-2}=2-\sqrt{2x+3}\left(đk:x\le\frac{1}{2}\left(voli\right)\right)\)
vậy x = 5