K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

\(\int^{\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+3\sqrt{5}y=21}\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+3\sqrt{5}\left(\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)\right)=21}\)

\(\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+15x-15\sqrt{3}+15=21}\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{\left(2\sqrt{3}+15\right)x=6+15\sqrt{3}}\)

\(\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{x=\frac{6+15\sqrt{3}}{2\sqrt{3}+15}}\Leftrightarrow\int^{y=\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{3}+\sqrt{5}=\sqrt{5}}_{x=\sqrt{3}}\)

Vậy nghiệm của hpt là: \(\int^{x=\sqrt{3}}_{y=\sqrt{5}}\)

7 tháng 10 2015

bình phương 2 vế lên là ra p :>

 

13 tháng 9 2015

P2\(=\left(\frac{1-A\sqrt{A}}{1-\sqrt{A}}+\sqrt{A}\right).\left(\frac{1-\sqrt{A}}{1-A}\right)^2\)\(=\left(\frac{1-A\sqrt{A}+\sqrt{A}-A}{1-\sqrt{A}}\right).\frac{\left(1-\sqrt{A}\right)^2}{\left(1-A\right)^2}\)\(=\frac{\left(\sqrt{A}+1\right)\left(1-A\right)}{1-\sqrt{A}}.\frac{\left(1-\sqrt{A}\right)^2}{\left(1-\sqrt{A}\right)^2\left(1+\sqrt{A}\right)^2}\)

\(=\left(\sqrt{A}+1\right)^2.\frac{1}{\left(1+\sqrt{A}\right)^2}=1\)

9 tháng 2 2020

\(Đkxđ:\hept{\begin{cases}x\ge2\\y\ge2\end{cases}}\)

Ta thấy các vế đều \(\ge0\)nên ta bình phương các vế ta được:

\(\Leftrightarrow\hept{\begin{cases}x+y+3+2\sqrt{\left(x+5\right)\left(y-2\right)}=49\\x+y+3+2\sqrt{\left(x-2\right)\left(y+5\right)}=49\end{cases}}\)

Trừ từng vế ta được: 

\(\sqrt{\left(x+5\right)\left(y-2\right)}=\sqrt{\left(x-2\right)\left(y+5\right)}\)

\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=\left(x-2\right)\left(y+5\right)\)

\(\Leftrightarrow xy+5y-2x-10=xy+5x-2y-10\)

\(\Leftrightarrow x=y\)

Thay vào một trong hai pt trên ta được:

\(2x+3+2\sqrt{x^2+3x-10}=49\)

\(\Leftrightarrow\sqrt{x^2+3x-10}=23-x\Leftrightarrow\hept{\begin{cases}x\le23\\x^2+3x-10=\left(23-x\right)^2\end{cases}}\Leftrightarrow x=11\)

Vậy hpt có nghiệm là: \(x=y=11\)