Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
a) 2x - 6 = 0
2x = 6
x = 3
Vậy tâp nghiệm S = { 3 }
b) ( x + 2 ) ( 2x + 1 ) =0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm S = { -2 ; -1/2 }
c) ( x + 2 ) ( 2x + 1 ) - ( 2x - 3 ) ( 2x + 1) = 0
( x + 2 - 2x + 3 ) ( 2x + 1 ) = 0
( -x + 5 ) ( 2x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm S = { 5 ; -1/2 }
d) \(\frac{x+3}{x-5}-\frac{4}{x}=\frac{20}{x\left(x-5\right)}\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-5\right)}-\frac{4\left(x-5\right)}{x\left(x-5\right)}=\frac{20}{x\left(x-5\right)}\)với \(x\ne0;x\ne5\)
\(\Rightarrow x^2+3x-4x+20=20\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\)
Vậy tập nghiệm S ={ 1 }
a) 2x - 6 = 0
<=> 2x = 6
<=> x = \(\frac{6}{2}\)= 3
b) (x+2).(2x+1) = 0
<=> x+2 = 0 => x = -2
2x+1 = 0 => x = \(\frac{-1}{2}\)
c)(x+2)(2x+1)-(2x-3)(2x+1)=0
<=>(2x+1)(5-x)=0
<=> 2x+1 = 0 => x = \(\frac{-1}{2}\)
5-x = 0 => x = 5
d) Đkxđ: x \(\ne\)5 ; 0
Qui đồng và khử mẫu ta được:
x\(^2\)+ 3x - 4x + 20 = 20
<=> x\(^2\)+ x = 0
<=> x (x+1) = 0
<=> x = 0 (loại)
x+1 = 0 => x= -1 (thỏa)
bài 1:
a) ĐKXĐ: x khác 0; x khác -1
\(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)
<=> (x - 1)(x + 1) + 1 - 2x = x
<=> x^2 - 2x = x
<=> x^2 - 2x - x = 0
<=> x^2 - 3x = 0
<=> x(x - 3) = 0
<=> x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 0 + 3
<=> x = 0 (ktm) hoặc x = 3 (tm)
=> x = 3
b) ĐKXĐ: x khác +-3; x khác -7/2
\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)
<=> 13x + 30 + x^2 = 12x + 42
<=> 13x + 30 + x^2 - 12x - 42 = 0
<=> x - 12 + x^2 = 0
<=> (x - 3)(x + 4) = 0
<=> x - 3 = 0 hoặc x + 4 = 0
<=> x = 0 + 3 hoặc x = 0 - 4
<=> x = 3 (ktm) hoặc x = -4 (tm)
=> x = -4
c) ĐKXĐ: x khác +-1
\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
<=> x(x + 1) - 2x = 0
<=> x^2 + x - 2x = 0
<=> x^2 - x = 0
<=> x(x - 1) = 0
<=> x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 0 + 1
<=> x = 0 (tm) hoặc x = 1 (ktm)
=> x = 0
d) \(\frac{x^2+2x}{x^2+1}-2x=0\)
<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)
<=> x(x + 2) - 2x(x^2 + 1) = 0
<=> x^2 - 2x^3 = 0
<=> x^2(1 - 2x) = 0
<=> x^2 = 0 hoặc 1 - 2x = 0
<=> x = 0 hoặc -2x = 0 - 1
<=> x = 0 hoặc -2x = -1
<=> x = 0 hoặc x = 1/2
bài 2:
(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0
<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0
<=> 2x^2 - 2x - 3x + 3 = 0
<=> 2x(x - 1) - 3(x - 1) = 0
<=> (2x - 3)(x - 1) = 0
<=> 2x - 3 = 0 hoặc x - 1 = 0
<=> 2x = 0 + 3 hoặc x = 0 + 1
<=> 2x = 3 hoặc x = 1
<=> x = 3/2 hoặc x = 1
bài 3:
(x^3 + x^2) + (x^2 + x) = 0
<=> x^3 + x^2 + x^2 + x = 0
<=> x^3 + 2x^2 + x = 0
<=> x(x^2 + 2x + 1) = 0
<=> x(x + 1)^2 = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 0 - 1
<=> x = 0 hoặc x = -1
(x\(^2\)+3)(2x+2)=0
<=> x\(^2\)+3=0 hoặc 2x+2=0
<=>x\(^2\) =-3(vô lý) 2x =-2
x =-1
Vậy x=-1
\(\left(x^2+3\right)\left(2x+2\right)=0\)
\(TH1:x^2+3=0\)
\(x^2=3\)(vl)
\(TH2:2x+2=0\)
\(2x=-2\)
\(x=-1\)
\(\Rightarrow x=-1\)
ĐKXĐ : \(x\ne2,x\ne4\)
Pt \(\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\) (2)
Đặt \(\frac{x+1}{x-2}=a,\frac{x-2}{x-4}=b\Rightarrow ab=\frac{x+1}{x-4}\)
Khi đó pt (2) trở thành :
\(a^2+ab-12b=0\)
\(\Leftrightarrow a^2-3ab+4ab-12b=0\)
\(\Leftrightarrow a\left(a-3b\right)+4b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3b\\a=-4b\end{cases}}\)
Bạn thay vào tính, được nghiệm là \(S=\left\{3,\frac{4}{3}\right\}\)
\(x^3+2x^2+x=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy tập nghiệm S = {0;-1}
\(x^3+2x^2+x=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)