K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

a) 2x - 6 = 0

2x = 6

x = 3

Vậy tâp nghiệm S = { 3 }

b) ( x + 2 ) ( 2x + 1 ) =0

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm S = { -2 ; -1/2 }

c) ( x + 2 ) ( 2x + 1 ) - ( 2x - 3 ) ( 2x + 1) = 0

( x + 2 - 2x + 3 ) ( 2x + 1 ) = 0

( -x + 5 ) ( 2x + 1 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm S = { 5 ; -1/2 }

d) \(\frac{x+3}{x-5}-\frac{4}{x}=\frac{20}{x\left(x-5\right)}\)

\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-5\right)}-\frac{4\left(x-5\right)}{x\left(x-5\right)}=\frac{20}{x\left(x-5\right)}\)với \(x\ne0;x\ne5\)

\(\Rightarrow x^2+3x-4x+20=20\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\)

Vậy tập nghiệm S ={ 1 }

14 tháng 4 2018

a) 2x - 6 = 0

<=> 2x = 6

<=> x  = \(\frac{6}{2}\)= 3

b) (x+2).(2x+1) = 0

<=> x+2 = 0 => x = -2

      2x+1 = 0 => x = \(\frac{-1}{2}\)

c)(x+2)(2x+1)-(2x-3)(2x+1)=0

<=>(2x+1)(5-x)=0

<=> 2x+1 = 0 => x = \(\frac{-1}{2}\)

      5-x = 0  => x = 5

d) Đkxđ: x \(\ne\)5  ;  0   

Qui đồng và khử mẫu ta được:

         x\(^2\)+ 3x - 4x + 20 = 20

<=>  x\(^2\)+ x = 0

<=> x (x+1) = 0

<=> x = 0 (loại)

      x+1 = 0  => x= -1 (thỏa)

30 tháng 4 2020

bài 1: 

a) ĐKXĐ: x khác 0; x khác -1

 \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)

<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)

<=> (x - 1)(x + 1) + 1 - 2x = x

<=> x^2 - 2x = x

<=> x^2 - 2x - x = 0

<=> x^2 - 3x = 0

<=> x(x - 3) = 0

<=> x = 0 hoặc x - 3 = 0

<=> x = 0 hoặc x = 0 + 3

<=> x = 0 (ktm) hoặc x = 3 (tm)

=> x = 3

b) ĐKXĐ: x khác +-3; x khác -7/2

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)

<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)

<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)

<=> 13x + 30 + x^2 = 12x + 42

<=> 13x + 30 + x^2 - 12x - 42 = 0

<=> x - 12 + x^2 = 0

<=> (x - 3)(x + 4) = 0

<=> x - 3 = 0 hoặc x + 4 = 0

<=> x = 0 + 3 hoặc x = 0 - 4

<=> x = 3 (ktm) hoặc x = -4 (tm)

=> x = -4

c) ĐKXĐ: x khác +-1

\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

<=> x(x + 1) - 2x = 0

<=> x^2 + x - 2x = 0

<=> x^2 - x = 0

<=> x(x - 1) = 0

<=> x = 0 hoặc x - 1 = 0

<=> x = 0 hoặc x = 0 + 1

<=> x = 0 (tm) hoặc x = 1 (ktm)

=> x = 0

d) \(\frac{x^2+2x}{x^2+1}-2x=0\)

<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)

<=> x(x + 2) - 2x(x^2 + 1) = 0

<=> x^2 - 2x^3 = 0

<=> x^2(1 - 2x) = 0

<=> x^2 = 0 hoặc 1 - 2x = 0

<=> x = 0 hoặc -2x = 0 - 1

<=> x = 0 hoặc -2x = -1

<=> x = 0 hoặc x = 1/2

30 tháng 4 2020

bài 2: 

(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0

<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0

<=> 2x^2 - 2x - 3x + 3 = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (2x - 3)(x - 1) = 0

<=> 2x - 3 = 0 hoặc x - 1 = 0

<=> 2x = 0 + 3 hoặc x = 0 + 1

<=> 2x = 3 hoặc x = 1

<=> x = 3/2 hoặc x = 1

bài 3:

(x^3 + x^2) + (x^2 + x) = 0

<=> x^3 + x^2 + x^2 + x = 0

<=> x^3 + 2x^2 + x = 0

<=> x(x^2 + 2x + 1) = 0

<=> x(x + 1)^2 = 0

<=> x = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = 0 - 1

<=> x = 0 hoặc x = -1

20 tháng 2 2020

\(a.\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\)\(0\)

\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2.\left(x+1\right).\left(x-3\right)}=0\)

\(\Leftrightarrow2x^2-6=0\)

\(\Leftrightarrow2x^2=6\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\sqrt{3}\)

\(b.2x^3-5x^2+3x=0\)

\(\Leftrightarrow x.\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x.\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x.\left[2x.\left(x-1\right)-3.\left(x-1\right)\right]=0\)

\(\Leftrightarrow x.\left(x-1\right).\left(2x-3\right)=0\)

Đến đây tự làm nhé có việc bận

20 tháng 2 2020

câu a sai dzoii

7 tháng 2 2020

a) \(\frac{x+\frac{x+1}{5}}{3}=1-\frac{2x-\frac{1-2x}{34}}{5}\)

\(\Leftrightarrow\frac{\frac{5x+x+1}{5}}{3}=1-\frac{\frac{68x-1+2x}{34}}{5}\)

\(\Leftrightarrow\frac{6x+1}{15}=1-\frac{70-1}{170}\)

\(\Leftrightarrow\frac{6x+1}{15}+\frac{70x-1}{170}-1=0\)

\(\Leftrightarrow\frac{34\left(6x+1\right)+3\left(70x-1\right)-510}{510}=0\)

\(\Leftrightarrow204x+34+210x-3-510=0\)

\(\Leftrightarrow414x-479=0\)

\(\Leftrightarrow x=\frac{479}{414}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{479}{414}\right\}\)

20 tháng 2 2020

bạn ơi bạn làm được câu c chưa 

31 tháng 3 2020

17) \(ĐKXĐ:x\ne1\)

 \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)

18) \(ĐKXĐ:x\ne1\)

 \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)

19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)

 \(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow x=-4\)(TM)

Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)

20) \(ĐKXĐ:x\ne0\)

 \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow x^4+x-x^4+x-3=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)

25 tháng 12 2019

a) \(\left(x-5\right)^2+\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-5+x+5\right)=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

b) \(\frac{x-2}{4}+\frac{2x-3}{3}=\frac{x-18}{6}\)

\(\Rightarrow\frac{3x-6}{12}+\frac{8x-12}{12}=\frac{2x-36}{12}\)

\(\Rightarrow\frac{11x-18}{12}=\frac{2x-36}{12}\)

\(\Rightarrow11x-18=2x-36\)

\(\Rightarrow11x-2x=18-36\)

\(\Rightarrow9x=-18\Rightarrow x=-2\)

c) \(\frac{1}{x-3}+\frac{x-3}{x+3}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-6x+9}{\left(x+3\right)\left(x-3\right)}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x^2-5x+12}{x^2-9}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow x^2-5x+12=5x-6\)

\(\Rightarrow x^2-10x+18=0\)

Giải biệt thức sẽ ra 2 nghiệm \(5+\sqrt{7}\)và \(5-\sqrt{7}\)

27 tháng 12 2019

Gửi Cool: Lần sau đừng quên tìm điều kiện nhé. Câu c. ĐK: x khác 3 và x khác -3

15 tháng 6 2019

a/ \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)

<=> \(\frac{\left(x+1\right)^2}{\left(x+1\right)^2+1}+\frac{\left(x+1\right)^2+1}{\left(x+1\right)^2+2}=\frac{7}{6}\left(1\right)\)

đặt \(\left(x+1\right)^2=a\left(a>0\right)\)

=> \(\left(1\right)\)<=> \(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)

<=> \(\frac{a\left(a+2\right)+\left(a+1\right)^2}{\left(a+1\right)\left(a+2\right)}=\frac{7}{6}\)

<=> \(\frac{2a^2+4a+1}{a^2+3a+2}=\frac{7}{6}\)

<=> \(6\left(2a^2+4a+1\right)=7\left(a^2+3a+2\right)\)

<=> \(5a^2+3a-8=0\)

<=> \(5a^2-5a+8a-8=0\)

<=>  \(\left(5a+8\right)\left(a-1\right)=0\)

<=> \(a=\frac{-8}{5}\left(h\right)a=1\)

mà \(a>0\)

=> \(a=1\)

=> \(\left(x+1\right)^2=1\)

=> \(x+1=1\left(h\right)x+1=-1\)

=> \(x=0\left(h\right)x=-2\)

vậy  ......

chúc bn học tốt

15 tháng 6 2019

Xét x = 0 và x = -2 , thay vào ta được \(VT=VP\)

Xét x > 0 : 

\(VT=\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=1-\frac{1}{x^2+2x+2}+1-\frac{1}{x^2+2x+3}\)

\(=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)>\frac{7}{6}=VP\) ( loại ) 

Xét x < -2 : 

\(VT=2-\left(\frac{1}{x\left(x+2\right)+2}+\frac{1}{x\left(x+2\right)+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{7}{6}=VP\) ( loại ) 

Xét -2 < x < 0 : 

\(VT=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{-2}+1\right)=\frac{3}{2}>\frac{7}{6}=VP\) ( loại ) 

Vậy ...