Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)+2019\)
\(=-3x^5+x^2-1009+\frac{1}{2}x^4-8x^3+x-2x^3+3x^5+\frac{1}{2}x^4-1010+2019\)
\(=x^4-10x^3+x^2+x\)
b) \(K\left(x\right)=Q\left(x\right)-P\left(x\right)+1\)
\(=x-2x^3+3x^5+\frac{1}{2}x^4-1010+3x^5-x^2+1009-\frac{1}{2}x^4+8x^3+1\)
\(=6x^5+6x^3-x^2+x\)
M(x) = P(x) + Q(x) + 2019
= -3x5 + x2 - 1009 + 1/2x4 - 8x3 + x - 2x3 + 3x5 + 1/2x4 - 1010 + 2019
= ( 3x5 - 3x5 ) + ( 1/2x4 + 1/2x4 ) + ( 2x3 - 8x3 ) + x2 + x + ( -1010 - 1009 + 2019 )
= x4 - 6x3 + x2 + x
K(x) = Q(x) - P(x) + 1
= x - 2x3 + 3x5 + 1/2x4 - 1010 - ( -3x5 + x2 - 1009 + 1/2x4 - 8x3 ) + 1
= x - 2x3 + 3x5 + 1/2x4 - 1010 + 3x5 - x2 + 1009 - 1/2x4 + 8x3 + 1
= ( 3x5 + 3x5 ) + ( 1/2x4 - 1/2x4 ) + ( 8x3 - 2x3 ) - x2 + x + ( 1009 - 1010 + 1 )
= 6x5 + 6x3 - x2 + x
Bài 1:
a) \(A=x^2+10x+25=\left(x+5\right)^2\) => A là số chình phương
b) \(B=x^2-2x+1=\left(x-1\right)^2\) => B là số chính phương
Bài 2:
a) \(xy-x+y=4\)
\(\Leftrightarrow\)\(x\left(y-1\right)+\left(y-1\right)=3\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y-1\right)=3\)
=> \(x+1\)và \(y-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
đến đây bạn làm nốt nha
các câu còn lại tương tự, đưa về pt tích
1)
A= x2+10x+25= x2+5x+5x+25=x(x+5)+5(x+5)=(x+5)(x+5)=(x+5)2
=> A là số chính phương
B=x2-2x+1=x2-x-x+1=x(x-1)-(x-1)=(x-1)(x-1)=(x-1)2
=> B là số chính phương
2)
a) \(xy-x+y=4\)
\(\Leftrightarrow x\left(y-1\right)=4-y\)
\(\Leftrightarrow x=\frac{4-y}{y-1}\)
\(\Leftrightarrow x=-1+\frac{3}{y-1}\)
Do x,y nguyên nên \(y-1\inƯ\left(3\right)\)
<=> y-1={-3;-1;1;3}
<=> y={-2;0;2;4}
Vậy (x;y)=(-2;-2);(-4;0);(2;2);(0;4)
b,c,d tương tự
3) 32018=91009<101009 (101009 là số nhỏ nhất có 1010 chữ số)
=>32018 có ít hơn 1010 chữ số
Có face xin link nha :)
\(1^2+2^2+3^2+...+10^2=385\)
Mà \(1^2.2=2^2\), \(2^2.2=4^2\)
\(\Rightarrow\left(1+2^2+3^2+...+10^2\right).2=S\)
\(\Rightarrow S=385.2=770\)