Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9=5.2^{30}.3^{18}-2^2.3^{20}.2^{27}\)
\(=5.2^{30}.3^{18}-3^{20}.2^{29}=2^{29}.3^{18}.\left(5.2-3^2\right)=2^{29}.3^{18}\)
\(B=5.2^9.\left(2.3\right)^{19}-7.2^{29}.\left(3^3\right)^6=5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}=5.2^{28}.3^{19}-7.2^{29}.3^{18}\)
\(=2^{28}.3^{18}.\left(5.3-7.2\right)=2^{28}.3^{18}\)
=> \(A:B=\left(2^{29}.3^{18}\right):\left(2^{28}.3^{18}\right)=\frac{\left(2^{29}.3^{18}\right)}{\left(2^{28}.3^{18}\right)}=2\)
b. kiểm tra lại đề bài nhé
1)Đưa về lũy thừa cùng cơ số 2
82= \(\left(2^3\right)^2=2^6\) 323= \(\left(2^5\right)^3=2^{15}\) 644= \(\left(2^6\right)^4=2^{24}\) 43= \(\left(2^2\right)^{^3}=2^6\)
2)Đưa về lũy thừa cùng cơ số 3
93= \(\left(3^2\right)^3=3^6\) 274= \(\left(3^3\right)^4=3^{12}\) 95= \(\left(3^2\right)^5=3^{10}\) 816= \(\left(3^4\right)^6=3^{24}\)
3)Đưa về lũy thừa cùng cơ số 2
83:42= \(\left(2^3\right)^3:\left(2^2\right)^2=2^9:2^4=2^5\) 162:32= \(\left(2^4\right)^2:2^5=2^8:2^5=2^3\)
\(64^4:4^3=\left(2^6\right)^4:\left(2^2\right)^3=2^{24}:2^6=2^{18}\) 323:82= \(\left(2^5\right)^3:\left(2^3\right)^2=2^{15}:2^6=2^9\)
a) 8180 < 2790
b) 377 > 738
c) 536 < 1124
d) 291 < 535
Đúng thì k, sai thì thôi
\(A=2^2+2^2+2^3+2^4+...+2^{2006}\)
\(2A=2^3+2^3+2^4+2^5+...+2^{2007}\)
\(2A-A=2^{2007}+2^3-\left(2^2+2^2\right)\)
\(A=2^{2007}+8-8\)
\(A=2^{2007}\)
\(\Rightarrow\text{ }2A=2^{2008}=2^{2\cdot1004}=\left(2^2\right)^{1004}=4^{1004}\)
\(\Rightarrow\text{ }x=1004\)
Đặt B=2^2+2^3....+2^2006
2B=2^3+2^4+....+2^2007
=>2B-B=(2^3+2^4+...+2^2007)-(2^2+2^3+....+2^2006)
B=2^2007-2^2
=>A=2^2007-2^2+2^2
A=2^2007
=>2A=2^2008
=>2A=4^1004
Vậy x=1004
a/ \(A=3+3^2+3^3+....+3^{2006}\)
\(\Leftrightarrow3A=3^2+3^3+.....+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3+3^2+...+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
b/ Ta có :
\(2A=3^{2007}-3\)
\(\Leftrightarrow2A+3=3^{2007}\)
Lại có : \(2A+3=3^x\)
\(\Leftrightarrow3^x=3^{2007}\)
\(\Leftrightarrow x=2007\)
a, A=31 + 32 + 33 + ... + 32006
3A = 32 + 33 + 34 + ... + 32007
3A-A=( 32 + 33 + 34 +...+ 32007 ) - ( 31 + 32 + 33 +...+ 32006)
2A = 32007 - 3
\(\Rightarrow A=\frac{3^{2007}-3}{2}\)
b, 2A + 3 = 3x
\(\Leftrightarrow2.\left(\frac{3^{2007}-3}{2}\right)+3=3^x\)
\(\Leftrightarrow3^{2007}-3+3=3^x\)
\(\Leftrightarrow3^{2007}=3^x\)
\(\Leftrightarrow2007=x\)
Vậy x = 2007
bài 1 :
a) S1=( 1 + 3 - 5 - 7 )+(9+11-13-15)+...+(393+395-397-399)
S1=(-8)+(-8)+...+(-8)
S1=(-8)*199
S1=-1592
b)S2=(1-2-3+4)+( 5 - 6 - 7 +8)+...+( 97 - 98 - 99 + 100)
S2=0+0+...+0
S2=0*100
S2=0
phần c và d tương tự nhé
BÀI 2
c)<=>2(x-1)+4 chia hết x-3
=>8 chia hết x-3
=>x-3\(\in\){-1,-2,-4,-8,1,2,4,8}
=>x\(\in\){2,1,-1,-5,4,5,7,11}
Ta có:
\(24^{54}\cdot54^{24}\cdot2^{10}\)
\(=24^{54}\cdot27^{24}\cdot2^{24}\cdot2^{10}\)
\(=24^{54}\cdot3^{72}\cdot2^{24}\cdot2^{10}\)
\(=24^{54}\cdot3^{54}\cdot3^{18}\cdot2^{24}\cdot2^{10}\)
\(=\left(24\cdot3\right)^{54}\cdot9^9\cdot4^{12}\cdot2^{10}\)
\(=72^{54}\cdot\left(9\cdot4\right)^9\cdot4^3\cdot2^{10}\)
\(=72^{54}\cdot72^9\cdot4^3\cdot2^{10}\)
\(=72^{63}\cdot4^3\cdot2^{10}⋮72^{63}\)
Vậy \(24^{54}\cdot54^{24}\cdot2^{10}⋮72^{63}\)
Chúc bạn ~ Học tốt ~
Bài 1 :
\(2^x.8=512\)
\(2^x=512:8\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)
\(b,\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(c,x^{20}=x\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(d,\left(x-3\right)^{10}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)