K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

bạn đặt mỗi biểu thức = 1 số bình phương ví dụ là x^2

ở câu a bn đặt xong nhân 4 lên sau đó biến đổi về 1 hằng đẳng thức 

câu b thì đưa chữ sang 1 vế số sang 1 vế

câu c làm tương tự câu a

2 tháng 11 2019

Đặt \(2n+2017=a^2;n+2019=b^2\)

\(\Rightarrow2n+4038=2b^2\)

\(\Rightarrow2b^2-a^2=2021\)

\(\Leftrightarrow\left(\sqrt{2b}-a\right)\left(\sqrt{2b}+a\right)=2021=1\cdot2021=47\cdot43\)

Tự xét nốt nha

2 tháng 11 2019

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2019}\)

\(\Leftrightarrow2019a+2019b-ab=0\)

\(\Leftrightarrow ab-2019a-2019b=0\)

\(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)

\(\Leftrightarrow a+b=a-2019+b-2019+2\sqrt{\left(a-2019\right)\left(b-2019\right)}\)

\(\Leftrightarrow2\sqrt{ab-2019a-2019b+2019^2}=2\cdot2019\)

\(\Leftrightarrow2\cdot2019=2\cdot2019\) ( LUÔN OK THEO COOL KID ĐZ )

P/S:SORRY NHA.LÚC CHIỀU BẬN VÀI VIỆC NÊN KO ONL DC:(((

9 tháng 10 2019

Xét: \(9M=\Sigma\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{3}{2}+\Sigma\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-3+\frac{9}{2}\)

\(=\Sigma\left(\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{1}{2}\right)+\Sigma\left(\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-1\right)+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\frac{b^2+c^2-2a^2}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2ab+2bc+2ca-4a^2-b^2-c^2}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\frac{\left(b-a\right)\left(b+a\right)+\left(c-a\right)\left(c+a\right)}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2a\left[\left(b-a\right)+\left(c-a\right)\right]}{4a^2+b^2+c^2}-\Sigma\frac{\left(b-c\right)^2}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\left(\frac{\left(a-b\right)\left(a+b\right)}{a^2+4b^2+c^2}-\frac{\left(a-b\right)\left(b+a\right)}{4a^2+b^2+c^2}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\left(a-b\right)\left(a+b\right)\left(\frac{3a^2-3b^2}{\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\Sigma\frac{3\left(a-b\right)^2\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{1}{a^2+b^2+4c^2}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2\left(a^2+b^2+4c^2\right)-2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(a^2+b^2+4c^2\right)}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)Ai đó làm tiếp giúp em vs:( Em chỉ nghĩ ra được tới đây thôi.

9 tháng 10 2019

Ta có:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;a^2+c^2\ge2\sqrt{a^2c^2}=2ac;a^2+a^2\ge2\sqrt{a^2a^2}=2a^2\)

Khi đó:

\(4a^2+b^2+c^2\ge2a\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{4a^2+b^2+c^2}\le\frac{1}{6a}\)

Tương tự:

\(\frac{1}{a^2+4b^2+c^2}\le\frac{1}{6b};\frac{1}{a^2+b^2+4c^2}\le\frac{1}{6c}\cdot\)

\(\Rightarrow M\le\frac{1}{6}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{abc}\cdot\frac{1}{6}\) \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

Theo BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Khi đó \(M\le\frac{3}{1}\cdot\frac{1}{6}=\frac{1}{2}\)

Dấu "=" xảy ra tại \(a=b=c=1\)

P/S:Is that true ??

6 tháng 10 2020

Bài 1:

Ta có: 

\(P=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(P=\left[\left(a+1\right)\left(a+4\right)\right]\cdot\left[\left(a+2\right)\left(a+3\right)\right]+1\)

\(P=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

Đặt \(x=a^2+5a+5\) , khi đó:

\(P=\left(a-1\right)\left(a+1\right)+1\)

\(P=a^2-1+1\)

\(P=a^2=\left(x^2-5x+5\right)^2\)

Mà \(a\inℤ\Rightarrow x^2-5x+5\inℤ\)

=> P là số chính phương

6 tháng 10 2020

\(\left(xy+yz+zx\right)^2+\left(x^2-yz\right)^2+\left(y^2-zx\right)^2+\left(z^2-xy\right)^2=x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)+x^4-2x^2yz+y^2z^2+y^4-2y^2zx+z^2x^2+z^4-2z^2xy+x^2y^2=x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)=\left(x^2+y^2+z^2\right)^2=100^2=10000\)