K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

Đặt \(S=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\)

           \(\frac{1}{4^2}< \frac{1}{3.4}\)

           . ....................

           \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

\(\Rightarrow S< \frac{1}{2}\)

21 tháng 4 2019

1/3^2 +1/4^2 +...+ 1/100^2 < 1/2.3+1/3.4+ 1/4.5 +...+ 1/99.100

1/3.3 +1/4.4 +...+ 1/100.100 < 1/2 -1/3 +1/3_1/4 +..+ 1/99-1/100

1/3.3 +1/4.4 +...+ 1/100.100 < 1/2 -1/100

1/3.3 +1/4.4 +...+ 1/100.100  < 50/100 -1/100

1/3.3 +1/4.4 +...+ 1/100.100   < 49/100

1/3.3 +1/4.4 +...+ 1/100.100 < 49/100 <50/100 = 1/2

\(\Rightarrow\)1/3^2 +1/4^2 +...+ 1/100^2    < 1/2

9 tháng 5 2019

"tôi ko biết làm"

3 tháng 5 2019

Nhân 3 lên xong trừ đi là ra ý mà !!!

29 tháng 8 2020

Bài làm:

Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)

Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)

Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)

14 tháng 1 2016

có thể cho mình cách giải được không?

10 tháng 8 2019

Câu 1,

x+y=-1/3 ; y+z=5/4 ; x+z= 4/3

=> 2(x+y+z)=9/4

=> x+y+z=9/8

Ta lại có: x+y=-1/3

=> z=9/8 -(-1/3)=35/24

Ta lại có: z+y=5/4

=> y=-5/24

=> x=.....

Câu 2:

\(-4\le x\le-\frac{11}{18}\)

21 tháng 4 2019

 Ta có:

 \(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(\frac{1}{5^2}< \frac{1}{4.5}\)

....

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\)

                                                                      \(-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

                             => đpcm                                                             

21 tháng 4 2019

Thank bn Hoàng đạo thứ 7 nhé. Cho 3 k r nhé hihi

2 tháng 5 2015

minh chiu kho qua thong cam nha !!!!!!!!!!!!!! hi hi

15 tháng 12 2018

Câu 1,

\(S=1+2+2^2+...+2^7\)

\(=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)

\(=3+2^2.3+2^4.3+2^6.3\)

\(=3\left(1+2^2+2^4+2^6\right)⋮3\)

Nên S chia hết cho 3

Câu 2 ,

\(A=5+5^2+5^3+...+5^{20}\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{19}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{19}.6\)

\(=6\left(5+5^3+...+5^{19}\right)⋮6\)

Nên A chia hết cho 6

15 tháng 12 2018

\(S=1+2+2^2+2^3+....+2^7\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)

\(S=3+2^2.\left(1+2\right)+.....+2^6.\left(1+2\right)\)

\(S=3+2^2.3+.....+2^6.3\)

\(\Rightarrow S=3.\left(1+2^2+...+2^6\right)\)

\(\Rightarrow S⋮3\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)

Vậy \(A>\frac{1}{10}\)

19 tháng 5 2019

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)

\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)

\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)

\(VayA>\frac{1}{100}=B\)