K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời:

1.      Ta có ÐCAB = 900 ( vì tam giác  ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn  đường kính BC => ABCD là tứ giác nội tiếp.

2.      ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).

3. Theo trên Ta có => ÐD1= ÐD2 => DM là tia phân giác của góc ADE.

                                      ~Học tốt!~

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC). a) Chứng minh tứ giác DHKC nội tiếp b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD c) Đường thẳng đi qua K song song với BC cắt đường...
Đọc tiếp

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC).

a) Chứng minh tứ giác DHKC nội tiếp

b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD

c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC thì E luôn nằm trên một đường tròn cố định.

Bài 4. Cho đường tròn tâm (O), hai điểm A, B nằm trên (O) sao cho AOB = 900 . Điểm C trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI và BK của tam giác ABC cắt nhau tại H, BK cắt (O) tại N (N khác B); AI cắt (O) tại điểm M (M khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng

a) Tứ giác CIHK nội tiếp

b) MN là đường kính của (O)

c) OC song song với DH.

 

GIÚP MÌNH VỚI!!!

GẤPPP

1
17 tháng 2 2020

Xin lỗi các bạn nhé 

Bài 3: góc ABD = 60 độ

Bài 4: AOB = 90 độ

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T

2
21 tháng 3 2020

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

21 tháng 3 2020

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.

9 tháng 6 2019

A B C O K H I M N E

a) Xét đường tròn (O): Tiếp tuyến KA, cắt tuyến KBC => KA2 = KB.KC (Hệ thức lượng đường tròn) (đpcm).

Ta có ^BAC nội tiếp (O), AM là phân giác ^BAC, M thuộc (O) nên M là điểm chính giữa cùng BC không chứa A

Do đó OM vuông góc BC. Mà AH vuông góc BC nên AH // OM => ^HAM = ^OMA = ^OAM

Suy ra AM là phân giác của ^OAH (đpcm).

b) M là điểm chính giữa cung BC của (O) nên BM = CM

Do MO cắt (O) tại N khác M nên O là trung điểm MN và MN là đường kính của (O)

Khi đó ^NCM = 900 hay CM vuông góc CN. Mà OE vuông góc NC nên OE // CM

Từ đó OE là đường trung bình của \(\Delta\)MNC => OE = CM/2. Hay OE = BM/2 (đpcm).

c) Có A,K,O là các điểm cố định => Độ dài các đoạn KA,OK,OA không đổi

Theo tính chất góc tạo bởi tiếp tuyến và dây => ^KAB = ^ACB. Ta có biến đổi góc:

^KIA = ^IAC + ^ICA = ^IAB + ^ACB = ^IAB + ^KAB = ^KAI => \(\Delta\)AKI cân tại K => KI = KA

Mà độ dài KA không đổi (cmt) nên độ dài KI cũng không đổi. Đồng thời có đường tròn (K,KA) cố định.

Do vậy I nằm trên đường tròn (K,KA) cố định. Hay I di động trên (K,KA) cố định khi cát tuyến KBC quay quanh K.

Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường cao BE và CF cắt nhau tại H . Đường thẳng BE và CF cắt (O) lần lượt tại M và N . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IN cắt AB tại P và IM cắt AC tại Q . Chứng minh : 3 điểm P,H,Q thẳng hàngBài 2 : Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) có 2 đường trung tuyến BM và CN cắt nhau tại G .Đường thẳng BM và CN cắt (O)...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường cao BE và CF cắt nhau tại H . Đường thẳng BE và CF cắt (O) lần lượt tại M và N . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IN cắt AB tại P và IM cắt AC tại Q . Chứng minh : 3 điểm P,H,Q thẳng hàng

Bài 2 : Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) có 2 đường trung tuyến BM và CN cắt nhau tại G .Đường thẳng BM và CN cắt (O) lần lươt tại D và E . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IE cắt AB tại P và ID cắt AC tại Q . Chứng minh : 3 điểm P,G,Q thẳng hàng

Bài 3 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường phân giác BM và CN của tam giác ABC cắt nhau tại  K . Đường thẳng BM và CN cắt (O) tại E và F . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IF cắt AB tại P và IE cắt AC tại Q .Chứng minh : 3 điểm P,K,Q thẳng hàng

Lưu ý : bài toán số 2 và 3 được khai thác và mở rộng từ bài toán số 1 , một điều thú vị nữa là các bài toán 1,2,3 có nội dung tương đối giống nhau

Nguon : Near Ryuzaki - VMF

Lam ho mik bai 2+3  nha 

1
2 tháng 3 2020

Cả 3 bài này đều sử dụng định lí Pascal

B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)

NC cắt BM tại H; NI cắt AB  tại P ; MI cắt AC tại Q 

=> P; H ; Q thẳng hàng

B2: Xét các điểm ADCIBE  cùng thuộc đường tròn (O)

B3: Tương tự.