K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc MDC=1/2*sđ cung CM=90 độ

góc BDC=góc BAC=90 độ

=>BADC nội tiếp

2: góc DEM=góc DCA

góc DCA=góc AEM

=>góc DEM=góc AEM

=>EM là phân giác của góc AED

 

Trả lời:

1.      Ta có ÐCAB = 900 ( vì tam giác  ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn  đường kính BC => ABCD là tứ giác nội tiếp.

2.      ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).

3. Theo trên Ta có => ÐD1= ÐD2 => DM là tia phân giác của góc ADE.

                                      ~Học tốt!~

20 tháng 1 2016

oài 3 bài này khó kinh khủng 

22 tháng 2 2019

a, 

1  Ta có ÐCAB = 900 ( vì tam giác  ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) =>ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn  đường kính BC => ABCD là tứ giác nội tiếp.

     ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).

ÐD1= ÐC3 => => ÐC= ÐC3 (hai góc nội tiếp đường tròn  (O) chắn hai cung bằng nhau)

=> CA là tia phân giác của góc SCB.

2, Xét DCMB Ta có BA^CM; CD ^ BM; ME ^ BC như vậy BA, EM, CD là ba đường cao của tam giác  CMB nên BA, EM, CD đồng quy.

3, 

Ta có ÐMEC = 900 (nội tiếp chắn nửa đường tròn (O)) => ÐMEB = 900.

Tứ giác AMEB có ÐMAB = 900 ; ÐMEB = 900 => ÐMAB + ÐMEB = 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn  => ÐA2 = ÐB2 .

Tứ giác ABCD là tứ giác nội tiếp => ÐA1= ÐB2( nội tiếp cùng chắn cung CD)

=> ÐA1= ÐA2 => AM là tia phân giác của góc DAE (2)

Từ (1) và (2) Ta có M là tâm đường tròn  nội tiếp tam giác  ADE

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:

1.

$\widehat{MDC}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{BDC}=90^0$

Tứ giác $ABCD$ có $\widehat{BAC}=\widehat{BDC}=90^0$ và cùng nhìn cạnh $BC$ nên là tgnt.

Do $ABCD$ nội tiếp nên $\widehat{BCA}=\widehat{BDA}$

Mà $\widehat{BDA}=\widehat{MCS}$ (do $MDSC$ nội tiếp)

$\Rightarrow \widehat{BCA}=\widehat{MCS}$

$\Rightarrow CA$ là phân giác $\widehat{BCS}$

2.

Gọi $T$ là giao điểm của $BA$ và $EM$

Xét tam giác $BTC$ có $TE\perp BC$ (do $\widehat{MEC}=90^0$) và $CA\perp BT$ và $TE, CA$ giao nhau tại $M$ nên $M$ là trực tâm tam giác $BTC$

$\Rightarrow BM\perp TC$.

Mà $BM\perp DC$ nên $TC\parallel DC$ hay $T,D,C$ thẳng hàng

Do đó $BA, EM, DC$ đồng quy tại $T$

3.

Vì $ABCD$ nt nên $\widehat{MAD}=\widehat{CAD}=\widehat{DBC}=\widehat{MBE}$

Dễ cm $BAME$ nội tiếp cho $\widehat{A}+\widehat{E}=90^0+90^0=180^0$ nên $\widehat{MBE}=\widehat{EAM}$

Do đó: $\widehat{MAD}=\widehat{EAM}$ nên $AM$ là tia phân giác $\widehat{EAM}(*)$

Mặt khác:

Cũng do $MECD,ABCD$ nội tiếp nên:

$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{MCE}=\widehat{MDE}$

$\Rightarrow DM$ là tia phân giác $\widehat{ADE}(**)$

Từ $(*); (**)\Rightarrow M$ là tâm đường tròn nội tiếp $ADE$.

 

 

 

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Hình vẽ: