Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
A B C x y O O 2 H
1/ Xét \(\diamond ACDO\), có :
\(\widehat{BAC}=\widehat{ACD}=\widehat{CDO}=90^0\)
\(\Rightarrow\diamond ACDO\) là hình chữ nhật
mà \(AC=CD\)
\(\Rightarrow\diamond ACDO\) là hình vuông.
2/ Ta có :
\(\bigtriangleup ABC\) vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^0\)
\(\bigtriangleup ABH\) vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{ABC}=90^0\)
Do đó \(\widehat{BAH}=\widehat{ACB}\)
Xét \(\bigtriangleup ABC\) và \(\bigtriangleup AOO_2\), có :
\(\widehat{BAC}=\widehat{O_2OA}=90^0\) (\(\diamond ACDO\) là hình vuông)
\(AC=AO\) (\(\diamond ACDO\) là hình vuông)
\(\widehat{OAO_2}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\))
\(\Rightarrow\bigtriangleup ABC=\bigtriangleup AOO_2\text{ }\left(g.c.g\right)\).
\(\text{GIẢI :}\)
A B C M E D
Chứng minh :
a) Xét \(\diamond\text{AEMD}\), có \(\hept{\begin{cases}\text{AE // DM }\\\text{EM // AD}\end{cases}}\)
\(\Rightarrow \text{ }\diamond\text{AEMD}\) là hình bình hành.
b) Để hình bình hành AEMD là hình thoi \(\Rightarrow\) AM là đường phân giác của góc A.
c) Để hình bình hành AEMD là hình vuông \(\Rightarrow\text{ }\hept{\begin{cases}\bigtriangleup\text{ABC vuông tại A}\\\text{AM là đường phân giác góc A}\end{cases}}\).
\(\text{GIẢI :}\)
A B C M D E
a) Xét \(\diamond\text{ADME}\) có \(DM\text{ }//\text{ }AB\), \(EM\text{ }//\text{ }AC\) \(\Rightarrow\text{ }\diamond\text{ADME}\) là hình bình hành.
b) Để hình bình hành ADME là hình thoi \(\Leftrightarrow\text{ }AM\) là tia phân giác của góc A.
Vậy M là giao điểm của tia phân giác góc A và cạnh BC thì ADME là hình thoi.
c) Để hình bình hành ADME là hình chữ nhật \(\Leftrightarrow\angle\text{A}=90^0\text{ }\Leftrightarrow\text{ }\bigtriangleup\text{ABC}\) vuông tại A.
\(\text{GIẢI :}\)
A B C D N M
Chứng minh :
Ta có : M là chân đường vuông góc kẻ từ A đến AB \(\Rightarrow\text{ }\widehat{\text{M}}=90^{\text{o}}\).
N là chân đường vuông góc kẻ từ A đến AC \(\Rightarrow\text{ }\widehat{\text{N}}=90^{\text{o}}\)
Xét \(\diamond\text{AMDN}\) có \(\widehat{\text{A}}=\widehat{\text{M}}=\widehat{\text{N}}=90^{\text{o}}\)\(\Rightarrow\text{ }\diamond\text{AMDN}\) là hình chữ nhật.
mà AD là đường phân giác của góc A \(\Rightarrow\text{ }\diamond\text{AMDN}\) là hình vuông.
a) Xét tam giác EBD và tam giác ABC ta có: \(\hept{\begin{cases}\widehat{EBD}-chung\\\widehat{DEB}=\widehat{BAC}\left(=90\right)\end{cases}}\)
\(\Rightarrow|\Delta EBD~\Delta ABC\left(g.g\right)\)
b) Từ 2 tam giác đồng dạng trên, ta có: \(\frac{EB}{AB}=\frac{BD}{BC}\Rightarrow BE.BC=BD.DA\left(dpcm\right)\)
c Xét tam giác BEA và tam giác BDC ta có: \(\hept{\begin{cases}\frac{EB}{AB}=\frac{BD}{BC}\left(cmt\right)\\\widehat{B}-chung\end{cases}}\)
\(\Rightarrow\Delta BEA~\Delta BDC\left(c.g.c\right)\Rightarrow\widehat{BAE}=\widehat{BCD}\left(dpcm\right)\)
Vẽ hình: Bạn tự vẽ được hăm?
a) Ta có: AE // MF; AF // ME
=> Tứ giác AFME là HBH.
b) HBH AFME + đk \(\widehat{FAE}=90^o\)\(\Rightarrow\)AFME là HCN.
Mà \(\widehat{FAE}=90^O\Leftrightarrow\widehat{BAC}=90^O\)\(\Leftrightarrow\)\(\Delta ABC\)vuông tại A.
Giải :
A B C M F E
a, Xét \(\diamond AFME\), có :
EM // AF (vì EM // AB)
FM // AE (vì FM // AC)
\(\Rightarrow\diamond AFME\) là hình bình hành.
b, Để \(\diamond AFME\) là hình chữ nhật \(\Rightarrow\text{}\diamond AFME\) có \(\widehat{A}=\widehat{F}=\widehat{M}=\widehat{E}=90^0\) \(\Rightarrow\bigtriangleup ABC\) có \(\widehat{A}=90^0\) hay \(\bigtriangleup ABC\) vuông tại A.
a) △ABC vuông tại A nên theo định lí Pytago ta có:
BC2 = AC2 + AB2
<=> BC2 = 62 + 82 = 100
<=> BC = 10 (cm)
△ABC có AD là tia phân giác
nên \(\dfrac{CD}{AC}\) = \(\dfrac{BD}{AB}\)= \(\dfrac{CD+BD}{AC+AB}\)= \(\dfrac{BC}{6+8}\)= \(\dfrac{10}{14}\)= \(\dfrac{5}{7}\) (theo tính chất dãy tỉ số bằng nhau)
Do đó BD = AB.\(\dfrac{5}{7}\)= \(\dfrac{40}{7}\)(cm)
b) Có HE ⊥ AB tại E => Góc AEH = 90o
Có AH ⊥ BC tại H => Góc AHB = 90o
Xét △AEH và △AHB có:
Góc AEH = Góc AHB = 90o (cmt)
Góc HAE chung
Do đó △AEH đồng dạng với △AHB (g.g)
=> \(\dfrac{AE}{AH}\) = \(\dfrac{AH}{AB}\) = AE.AB = AH2 (1)
c) Có HF⊥AC tại F => Góc AFH = 90o
Xét △AFH và △AHC có:
Góc AFH = Góc AHC = 90o
Góc CAH chung
Do đó △AFH đồng dạng với △AHC (g.g)
=> \(\dfrac{AF}{AH}\) = \(\dfrac{AH}{AC}\) <=> AF.AC = AH2 (2)
Từ (1) và (2) suy ra AF.AC = AE.AB <=> \(\dfrac{AE}{AC}\) = \(\dfrac{AF}{AB}\)
\(\text{GIẢI :}\)
A B C H D O I x y
a) Xét \(\diamond\text{ACDO}\) có \(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)
\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.
mà \(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.
b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)
Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)
hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)
Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).
Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :
\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)
\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)
\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\) và \(\widehat{BAH}\) đối đỉnh)
\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)
\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).