Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4S = 4 + 42 + 43 + 44 + ... + 4120
4S - S = 4120 - 1
3S = 4120 - 1
3S + 1 = 4120 - 1 + 1
Vì 43 = 64 < 34 = 81\(\hept{\begin{cases}3S+1=4^{120}=\left(4^3\right)^{40}\\B=3^{160}=\left(3^4\right)^{40}\end{cases}}\)
\(\Rightarrow\left(4^3\right)^{40}< \left(3^4\right)^{40}\)
\(\Rightarrow3S+1< B\)
Vậy \(3S+1< B\)
Chúc bạn học tốt !!!
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
nhóm 3 số vào 1 nhóm rồi ts chúng riêng nhom thứ nhất tính ra luôn
S=1+3^2+3^4+3^6+...+3^2002
3^2S=3^2+3^4+3^8+..+3^2004
9S-S=3^2+3^4+3^6+3^8+...+3^2004-1-3^2-3^4-3^6-...-3^2002
8S=3^2004-1
S=(3^2004-1):8
b) (1+3^2+3^4)+...+(3^1998+3^2000+3^2002)
=91+...+3^1998(1+3^2+3^4)
=91(1+...+3^1998) chia hết cho 7
ta có: S=( 31+32+33+34+35+36)+...+32016
S= 31(1+3+32+33+34+35) +...+ 32011(1+3+32+33+34+35)
S= 31.364+...+ 32011.364
S= 364. ( 31+...+32011 )
S= 26.14.(31+...+32011) chia hết cho 26
vậy S chia hết cho 26
3+32+33+...............+32016
=(3+32+33+34+35+36)+.............+(32011+32012+32013+32014+32015+32016)
=3.(1+3+32+33+34+35)+...........+32011.(1+3+32+33+34+35)
=3.364+.................+32011.364
=3.14.26+...............+32011.14.26 chia hết cho 26
=>đpcm
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
S=( 5+5^2+5^3)+....+(5^2011+5^2012+5^2013). Nhóm 3 số 1 bộ
S=5(1+5+5^2)+.....+5^2011(1+5+5^2)
S=5.31+.....+5^2011.31
S=31(5+....+5^2011) chia hết cho 31(đpcm)
Tick nhé.
Tiện thể cho mình hỏi cách viết số mũ lên cao thế nào vậy
S=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396(1-3+32-33)
=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20
b) 3S=3-32+33-34+..+399-3100
3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)
4S=1-3100
S=(1-3100):4
Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1
a) \(S=4^0+4^1+4^2+...+4^{35}\)
\(S=\left(4^0+4^1+4^2\right)+...+\left(4^{33}+4^{34}+4^{35}\right)\)
\(S=21+...+4^{33}\cdot\left(1+4+4^2\right)\)
\(S=21+...+4^{33}\cdot21\)
\(S=21\cdot\left(1+...+4^{33}\right)⋮21\left(đpcm\right)\)
còn b) thì sao bạn ? giải dùm mik luôn đi thanks