K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

chia cho mấy mới làm chớ

9 tháng 1 2016

phân tích số 26=13.2

ghép 3 số hạng ta được:3(1+3+9)+3^4(1+3+9)+...+3^2012(1+3+9)

                                   =3.13+3^4.13+...+^2012.13

                                   =13(3+3^4+...+3^2012)

vậy dãy số đó chia hết cho 13.

ghép 2 số hạng ta được:3(1+3)+3^3(1+3)+...+3^2015(3+1)

                                  =3.4+3^3.4+...+3^2015.4

                                  =4(3+3^3+...+3^2015)

 vậy dãy số đó chia hết cho 2.

vì dãy số đó chia hết cho cả 2 và 13.

vậy dãy số đó chia hết cho 26.

 

10 tháng 1 2016

ta có: S=( 31+32+33+34+35+36)+...+32016

S= 31(1+3+32+33+34+35) +...+ 32011(1+3+32+33+34+35)

S= 31.364+...+ 32011.364

S= 364. ( 31+...+32011 )

S= 26.14.(31+...+32011) chia hết cho 26

vậy S chia hết cho 26

10 tháng 1 2016

3+32+33+...............+32016

=(3+32+33+34+35+36)+.............+(32011+32012+32013+32014+32015+32016)

=3.(1+3+32+33+34+35)+...........+32011.(1+3+32+33+34+35)

=3.364+.................+32011.364

=3.14.26+...............+32011.14.26 chia hết cho 26

=>đpcm

14 tháng 2 2016

S=(1-3+32-33)+...+(396-397+398-399)

=-20+...+396(1-3+32-33)

=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20

b) 3S=3-32+33-34+..+399-3100

3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)

4S=1-3100

S=(1-3100):4

Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1

14 tháng 2 2016

bài toán khó cực

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

23 tháng 10 2021

\(3,1+5^2+5^4+...+5^{26}\)

\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)

\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)

\(=26+5^4.26+...+5^{24}.26\)

\(=26\left(5^4+...+5^{24}\right)\)

Vì  \(26⋮26\)

\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)

23 tháng 10 2021

\(4,1+2^2+2^4+...+2^{100}\)

\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)

\(=21+2^6.21...+2^{98}.21\)

\(=21\left(2^6+...+2^{98}\right)\)

Có : \(21\left(2^6+...+2^{98}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)

14 tháng 11 2015

bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3

=(...6).(...8)=..8

2003^2004=(2003^4)^501 = ...1

2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2

b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5

c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10 

nếu đúng nhớ tick cho mình nhé

10 tháng 1 2016

a) S=1-3+3^2-3^3+...+3^98-3^99

S=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)

S=-20+3^4(1-3+3^2-3^3)+...+3^96(1-3+3^2+3^3)

S=-20+3^4(-20)+...+3^96(-20)

S=-20(1+3^4+...+3^96)

=>S chia hết cho -20

b) S=1-3+3^2-3^3+...+3^98-3^99

3S=3(1-3+3^2-3^3+...+3^98-3^99)

3S=3-3^2+3^3-3^4+...+3^99-3^100

3S+S=(3-3^2+3^3-3^4+...+3^99-3^100)+(1-3+3^2-3^3+..+3^98-3^99)

4S=1-3^100

S=(1-3^100)/4

=>1-3^100 chia hết cho 4 (vì z là số nguyên)

=>3^100-1 chia hết cho 4

=>3^100 chia 4 dư 1

7 tháng 2 2016

nhóm 3 số vào 1 nhóm rồi ts chúng riêng nhom thứ nhất tính ra luôn

7 tháng 2 2016

S=1+3^2+3^4+3^6+...+3^2002

3^2S=3^2+3^4+3^8+..+3^2004

9S-S=3^2+3^4+3^6+3^8+...+3^2004-1-3^2-3^4-3^6-...-3^2002

8S=3^2004-1

S=(3^2004-1):8

b) (1+3^2+3^4)+...+(3^1998+3^2000+3^2002)

=91+...+3^1998(1+3^2+3^4)

=91(1+...+3^1998) chia hết cho 7