K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

giúp nhé <3

Vì AB//CD

=> A + D = 180° ( trong cùng phía) 

Mà A = 3D 

=> 3D + D = 180°

=> 4D = 180°

=> D = 45° 

=> A = 180° - 45° = 135° 

Vì ABCD là hình thang cân 

=> A = B = 135° 

=> C = D = 45°

25 tháng 12 2018

Tự vẽ hình nhé N

a) Vì ABCD là hình thang cân

=> AD=BD( t/c)

     \(\widehat{D}=\widehat{C}\)(t/c)

Lại có: \(\hept{\begin{cases}AH\perp CD\\BK\perp CD\end{cases}\Rightarrow\hept{\begin{cases}\widehat{H}=90^o\\\widehat{K}=90^o\end{cases}}}\)

N tự xét tam giác AHD và tam giác BKC nhé

a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ 
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2

a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ 
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2

22 tháng 10 2019

Bài làm :

A B C D E F

a/ Xét \(\diamond EBFD\), có :

  • \(EB//DF\) (vì \(AB//CD\))
  • \(EB=\frac{1}{2}AB=\frac{1}{2}DC=FC\)

\(\Rightarrow \diamond EBFD\) là hình bình hành \(\Rightarrow DE=BF,\:EB//EF\)(1)

b/ Xét \(\diamond AECF\), có :

  • \(AE//FC\) (vì \(AB//CD\))
  • \(AE=\frac{1}{2}AB=\frac{1}{2}DC=FC\)

\(\Rightarrow\:\diamond AECF\) là hình bình hành \(\Rightarrow AF=EC, AF//EC\) (2)

Từ (1) và (2) \(\Rightarrow \diamond EMFN\) là hình bình hành.

8 tháng 1 2019

bạn cứ dùng hệ quả định lí ta-lét là được

14 tháng 9 2019

Bài 1: Nhường chủ tus và các bạn:D

Bài 2(ko chắc nhưng vẫn làm:v): A B C D O

Do OA = OB(*) nên \(\Delta\)OAB cân tại O nên ^OAB = ^OBA (1)

Mặt khác cho AB // CD nên^OAB = ^OCD; ^OBA = ^ODC (so le trong) (2)

Từ (1) và (2) có ^OCD = ^ODC nên \(\Delta\) ODC cân tại O nên OC = OD (**)

Cộng theo vế (*) và (**) thu được:OA + OC = OB + OD

Hay AC = BD. Do đó hình thang ABCD có 2 đường chéo bằng nhau nên nó là hình thang cân (đpcm)

17 tháng 9 2019

B1: Tứ giác ABCD : ^B=^C (=110 ĐỘ) => ABCD là hình thang cân

B2 :   A B D C O