Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: Tứ giác ABCD : ^B=^C (=110 ĐỘ) => ABCD là hình thang cân
B2 : A B D C O
bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm
tg BDE cân tại B:
ta có:ACD=BAC(AB//CD)
mà ACD =BEC =>BEC=BAC
xét tg ABC va tg ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
ma `BEC=ACD(đồng vị)
=>ACD=BDC
xét tg ACD va tg BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tg ACD = tg BDC
=>ADC=BCD
=>ABCD la hình thang cân (đpcm)
Ko bt vẽ hình ở đây ntn Thông cảm 🙏🙏
Cách vẽ : Vẽ sao cho cân tại B và C và B ; C là 2 góc trong cùng phía , nối A với C
Giải:
a) Vì AB//DC ( gt)
=> BAC = ACD ( so le trong )
Mà AC là pg BCD
=> BCA = ACD
Mà BAC = ACD (cmt)
=> BCA = BAC
=> tam giác BAC cân tại B
B)
Giải :
Vì AH vuông góc với DC
=> BHD = 90 độ
Vì AF vuông góc với DC
=> AFC = 90 độ
=> AFC= BHD = 90 độ
=> AF// BH(1)
Vì AB// DC ( gt)
=> AB//FC (2)
Từ (1) và (2)=> AB = AF = FH = HB = 5cm ( Vì AF = 5cm) tính chất của hình thang
Vì tam giác ABC cân tại B ( cm ở ý a)
=> AB = BC = 5cm
Áp dụng định lý Py- ta - go ta có :
BC2= BG2+GC2
GC2=√25-- BG2
Tớ phân vân không biết đáp án của tớ có đúng không Nếu sai thông cảm nhé
Vì AB//CD
=> A + D = 180° ( trong cùng phía)
Mà A = 3D
=> 3D + D = 180°
=> 4D = 180°
=> D = 45°
=> A = 180° - 45° = 135°
Vì ABCD là hình thang cân
=> A = B = 135°
=> C = D = 45°
a) Ta có: AB//CD(gt)
mà E∈AB và F∈CD
nên AE//DF và EB//FC
Xét tứ giác AEFD có AE//DF(cmt)
nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)
Hình thang AEFD(AE//DF) có
O là trung điểm của EF(gt)
OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)
Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)
Xét tứ giác BEFC có BE//FC(cmt)
nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)
Hình thang BEFC(BE//FC) có
O là trung điểm của EF(gt)
ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)
Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)
Xét ΔABD có
M là trung điểm của AD(cmt)
E là trung điểm của AB(gt)
Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
⇒ME//BD và ME=BD2ME=BD2(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔBDC có
N là trung điểm của BC(cmt)
F là trung điểm của CD(gt)
Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
⇒NF//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra ME//NF và ME=NF
Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)
nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét ΔBAC có
E là trung điểm của AB(gt)
N là trung điểm của BC(cmt)
Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)
⇒EN//AC và EN=AC2EN=AC2(Định lí 2 về đường trung bình của tam giác)
Hình bình hành EMFN trở thành hình thoi khi EM=EN
mà EM=BD2EM=BD2(cmt) và EN=AC2EN=AC2(cmt)
nên BD=AC
Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi
A B H D C 1 2
a,kẻ \(AH\bot DC(H\in BC)\)
cm được ABHD là hình chữ nhật suy ra AB=HD=2cm
Mà DH+HC=DC
\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\)
\(\Rightarrow \Delta DBC\) cân tại B
\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)
\(\Rightarrow\Delta DBC \) vuông cân tại B
b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)
\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D
c,Ta tính được BH=DH=CH=2cm
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)
Hướng dẫn cách vẽ hình : Cậu nên vẽ hình thang ABCD cân tại C và D và sao cho góc A và góc D là 2 góc kề 1 bên của tứ giác !!!!( ko bt vẽ trên này
Giải :
Ta có hình thang ABCD có 2 đáy AB và DC
=> AB//DC
Mà M là giao điểm phân giác của 2 góc B và góc D nằm trên AB
=> AM//DC
=> BM//DC
Vì AM//BC
=> AMD = MDC ( 2 góc so le trong ) ( 1)
Mà DM là pg ADC
=> ADM = MDC (2)
Từ (1) và (2) :
=> ADM = AMD
=> Tam giác AMD cân tại A
=> AD = AM(3)
Chứng minh tương tự ta cũng có tam giác MBC cân tại B và suy ra BC = MB(4)
Từ (3) và (4)
=> M là trung điểm AB
Còn ý b) ko bt làm
Sai thông cảm nhé
Bài 1: Nhường chủ tus và các bạn:D
Bài 2(ko chắc nhưng vẫn làm:v): A B C D O
Do OA = OB(*) nên \(\Delta\)OAB cân tại O nên ^OAB = ^OBA (1)
Mặt khác cho AB // CD nên^OAB = ^OCD; ^OBA = ^ODC (so le trong) (2)
Từ (1) và (2) có ^OCD = ^ODC nên \(\Delta\) ODC cân tại O nên OC = OD (**)
Cộng theo vế (*) và (**) thu được:OA + OC = OB + OD
Hay AC = BD. Do đó hình thang ABCD có 2 đường chéo bằng nhau nên nó là hình thang cân (đpcm)