Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=[1/1+1/2+....+1/98]*2*4*...*98*3*33=A=[1/1+1/2+....+1/98]*2*4*....*98*99\(⋮\)99
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times98\)
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times33\times...\times98\)
\(A=\left(3\times33\right)\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)
\(A=99\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)
Vậy \(A⋮99\)(Vì A có thừa số 99)
+) chia hết cho 2 :
Dễ thấy tất cả các hạng tử của 2 đều chia hết cho 2
=> A chia hết cho 2
+) chia hết cho 3 :
A = 2 + 22 + ... + 299 + 2100
A = ( 2 + 22 ) + ... + ( 299 + 2100 )
A = 2 ( 1 + 2 ) + ... + 299 ( 1 + 2 )
A = 2 . 3 + ... + 299 . 3
A = 3 . ( 2 + ... + 299 ) chia hết cho 3
+) chia hết cho 15 : tương tự
Gợi ý : nhóm 4 số một
+) chia hết cho 31 : tương tự
Gợi ý : nhóm 5 số một
1, B=3+32+33+...+390
=(3+32+33)+(34+35+36)+...+(388+389+390)
=3.(1+3+32)+34.(1+3+32)+...+388.(1+3+32)
=3.(1+3+9)+34.(1+3+9)+...+388.(1+3+9)
=3.13+34.13+388.13
=13.(3+34+388)
Vậy tổng B=3+32+33+...+390 \(⋮\)13
Bài 1 : \(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{88}+3^{89}+3^{90}\right)\)
\(B=\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{87}\left(3+3^2+3^3\right)\)
\(B=1.39+3^3.39+...+3^{87}.39\)
\(B=39\left(1+3^3+...+3^{87}\right)\)
\(B=13.3.\left(1+3^3+...+3^{87}\right)⋮13\)
Bài 2:
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{195}+2^{196}+2^{197}\right)\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{195}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{195}.7\)
\(A=7\left(1+2^3+...+2^{195}\right)⋮7\)
Vậy số dư khi chia cho 7 là 0
(Mình không chắc đúng,nếu sai thì bạn thông cảm nhé )
Chúc bạn học tốt
S=1+2+22+23+.....+297+298+299
S=20+2+22+23+.....+297+298+299
2S=2.(20+2+22+23+.....+297+298+299)
2S=21+22+23+24+....+298+299+2100
2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)
S=2100-20
S=2100-1
bS=1+2+22+23+.....+297+298+299
S=(1+2)+(22+23)+...+(296+297)+(298+299)
S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)
S=3+22.3+....+296.3+298.3
S=3.(1+22+.....+296+298)\(⋮\)3
Vậy S\(⋮\)3
c Ta có:S=2100-1
2100=24.25=(24)25
Ta có: 24 tân cùng là 6
=>(24)25 tận cùng là 6
Hay 2100=(24)25 tận cùng là 6
=>2100-1 tận cùng là 5
Vậy S tận cùng là 5
Chúc bn học tốt
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
-48 x 72 + 36 x (-304)