K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

1, B=3+32+33+...+390

       =(3+32+33)+(34+35+36)+...+(388+389+390)

       =3.(1+3+32)+34.(1+3+32)+...+388.(1+3+32)

       =3.(1+3+9)+34.(1+3+9)+...+388.(1+3+9)

       =3.13+34.13+388.13

       =13.(3+34+388)

Vậy tổng B=3+32+33+...+390 \(⋮\)13

8 tháng 10 2018

Bài 1 : \(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{88}+3^{89}+3^{90}\right)\)

\(B=\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{87}\left(3+3^2+3^3\right)\)

\(B=1.39+3^3.39+...+3^{87}.39\)

\(B=39\left(1+3^3+...+3^{87}\right)\)

\(B=13.3.\left(1+3^3+...+3^{87}\right)⋮13\)

Bài 2:

\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{195}+2^{196}+2^{197}\right)\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{195}\left(1+2+2^2\right)\)

\(A=7+2^3.7+...+2^{195}.7\)

\(A=7\left(1+2^3+...+2^{195}\right)⋮7\)

Vậy số dư khi chia cho 7 là 0

(Mình không chắc đúng,nếu sai thì bạn thông cảm nhé )

Chúc bạn học tốt

14 tháng 11 2015

bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3

=(...6).(...8)=..8

2003^2004=(2003^4)^501 = ...1

2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2

b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5

c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10 

nếu đúng nhớ tick cho mình nhé

16 tháng 12 2018

bài 8

c) chứng minh \(\overline{aaa}⋮37\)

ta có: \(aaa=a\cdot111\)

\(=a\cdot37\cdot3⋮37\)

\(\Rightarrow aaa⋮37\)

k mk nha

k mk nha.

#mon

16 tháng 12 2018

Trả lời 1 bài cũng đc

2 tháng 1 2019

mk chỉ làm đc câu a) bài 1 thôi nha !

Bài 1 .

Ta có :

 a) A = (2+22)+(23+24)+...+299+2100

=> A = (1+2).21+(1+2).23+...+(1+2).299

=> A = 3.(21+23+...+299\(⋮\)3

=> A \(⋮\)3

30 tháng 10 2020

Bài toán này rất khó, dành cho học sinh giỏi

30 tháng 10 2020

Gợi ý : Ghép 2 số liền nhau thành một cặp rồi đặt thừa số chung ra ngoài .

14 tháng 12 2015

Kinh thế cơ á