Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Combo 3 câu :)
4/ \(f=5Hz\Rightarrow\omega=10\pi\left(rad/s\right)\)
\(A^2=x^2+\frac{v^2}{\omega^2}\Leftrightarrow A=\sqrt{\left(2\sqrt{3}\right)^2+\frac{20^2\pi^2}{10^2\pi^2}}=4\left(cm\right)\)
\(2\sqrt{3}=4\cos\varphi\Rightarrow\varphi=\pm\frac{\pi}{6}\)
\(v=-20\pi< 0\Rightarrow\varphi>0\Rightarrow\varphi=\frac{\pi}{6}\)
\(\Rightarrow x=4\cos\left(10\pi t+\frac{\pi}{6}\right)\)
5/ \(A^2=\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}\Rightarrow A=\sqrt{\frac{a^2}{\omega^4}+\frac{v^2}{\omega^2}}=...\)
6/ Áp dụng công thức ở câu 5
Áp dụng: \(v_{max} = \omega A \Rightarrow A = \frac{v_{max}}{\omega} = 120/20 =6 \ cm\)
Li độ trễ pha \(\frac {\pi}{2}\) so với vận tốc, nên ta có phương trình dao động là: \(x = 6\cos(10 t - \frac{\pi}{2}) \ (cm)\)
Thay t = T/6 vào phương trình trên, ta được x = \(3\sqrt3 \ cm\)
+ Gia tốc: \(a=-\omega^2x\Rightarrow x=-\frac{a}{\omega^2}=-\frac{-3000}{\left(10\pi\right)^2}=3cm\)
+ Ta có: \(x=A.\cos\left(\frac{\pi}{3}\right)=3\Rightarrow A=6cm\)
+ Vận tốc: \(v=-\omega A\sin\varphi=-10\pi.6.\sin\frac{\pi}{3}-30\sqrt{3}\pi\left(\frac{cm}{s}\right)\)
Chu kì: \(T=\frac{2\pi}{5\pi}=0,4s\)
Trong thời gian 1/10 s = 1/4 T thì véc tơ quay đã quay một góc: 360/4 = 900.
Biểu diễn bằng véc tơ quay, ta dễ dàng tìm đc li độ thời điểm sau đó 1/10 s là 4 và -4cm.
Câu 5. Một vật dao động điều hòa với phương trình: x = 6sin (t + ) (cm). Li độ và vận tốc của vật ở thời điểm t = s là:
A. x = 6cm; v = 0
B. x = 3cm; v = 3 cm/s
C. x = 3cm; v = 3 cm/s
D. x = 3cm; v = -3 cm/s