Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác DFB có:
\(\hept{\begin{cases}\widehat{D}=90^o\left(DE\perp AB\right)\\\widehat{C}=90^o\end{cases}}\)
=> Tứ giác DFBC nội tiếp
b) Xét tam giác BFG có \(\hept{\begin{cases}\widehat{FBG}=\frac{1}{2}\widebat{AG}\\\widehat{BGF}=\frac{1}{2}\widebat{AE}\end{cases}}\)
Mà cung AB= cùng BG
=> BF=BG
a,Áp dụng hệ thức lượng trong tam giác:
+) Tam giácACE , có :
\(AC^2=AB.AE\left(1\right)\)
+) Tam giác ACF , có :
\(AC^2=AD.\text{AF}\left(2\right)\)
Từ (1) và (2) =>AB.AE=AD=AF (đpcm)
Trả lời:
1. Ta có ÐCAB = 900 ( vì tam giác ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn đường kính BC => ABCD là tứ giác nội tiếp.
2. ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).
3. Theo trên Ta có => ÐD1= ÐD2 => DM là tia phân giác của góc ADE.
~Học tốt!~
A B C D E F
b) \(\widehat{BCE}=\widehat{ACF}\leftarrow\orbr{\begin{cases}\widehat{BCE}=\widehat{BDA}\left(ABCDnt\right)\\\widehat{ACF}=\widehat{BDA}\left(ECDFnt\right)\end{cases}}\)