K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

\(5,\)\(\frac{1}{5}x\left(10x-15\right)-2x\left(x-5\right)+7x\)

\(=2x^2-3x+-2x^2+10x-7x\)

\(=0\)

\(\Rightarrow\)Giá trị biểu thức không phụ thuộc vào biến x

11 tháng 6 2019

\(6,\)\(F=5\left(x^2-3x\right)-x\left(3-5x\right)+18x+3\)

\(=5x^2-15x-3x-5x^2+18x+3\)

\(=3\)

Vậy giá trị biểu thức không phụ thuộc vào biến x 

 ( À có một số chỗ mình phải sửa đề mới đúng đó. Cậu coi lại giùm mình nha )

25 tháng 6 2019

4,\(6x^2+10x-9x-15=6x^2+12x\) 

     \(6x^2+x-15-6x^2-12x\) =0

                11x-15=0

                 11x=15

                x=\(\frac{15}{11}\) 

vậy.......

hc tốt

25 tháng 6 2019

\(a,\left(2x-3\right)\left(3x+5\right)+3=6x\left(x+2\right)\)

\(\Rightarrow6x^2+2x-15+3=6x^2+12x\)

\(\Rightarrow10x=-12\)

\(\Rightarrow x=-\frac{5}{7}\)

\(b,\)Sai đề không ?

16 tháng 10 2019

1, a^2 - 4b^2

= a^2 - (2b)^2

=(a-2b)(a+2b)

2,  1/4 a^2 - b^2

=(1/2a)^2 -b^2

=(1/2a-b)(1/2a+b)

16 tháng 10 2019

3,   (a-2b)^2 - (3a+b)^2

=  (a-2b-3a-b)(a-2b+3a+b)

=  (-2a-3b)(4a-b)

12 tháng 4 2020

a/ Đkxđ: \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

Vậy phân thức được xác định khi \(\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

b/ \(A=\left[1+\frac{1}{x}+\frac{2}{x+1}\left(1+\frac{1}{x}\right)\right]:\frac{x^3+27}{2x}\)

\(=\left[1+\frac{1}{x}+\frac{2}{x+1}+\frac{2}{\left(x+1\right)x}\right]:\frac{\left(x+3\right)\left(x^2-3x+9\right)}{2x}\)

\(=\left[\frac{x\left(x+1\right)+\left(x+1\right)+2x+2}{\left(x+1\right)x}\right].\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}\)

\(=\frac{x^2+4x+3}{\left(x+1\right)x}.\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}=\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)x}.\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}\)

\(=\frac{2}{x^2-3x+9}\)

12 tháng 4 2020

thk bn nhe

25 tháng 2 2020

a) A có nghĩa <=> \(\left\{{}\begin{matrix}2x-2\ne0\\2-2x^2\ne0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}x-1\ne0\\\left(1-x\right)\left(x+1\right)\ne0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x\ne1\\x\ne\pm1\end{matrix}\right.\)

b) Ta có:

A = \(\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
A = \(\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x^2-1\right)}\)

A = \(\frac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

A = \(\frac{x^2+x-x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

A = \(\frac{x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{1}{2\left(x-1\right)}\)

c) A = -1/2

<=> \(\frac{1}{2\left(x-1\right)}=-\frac{1}{2}\)

<=> 2(x - 1) = -2

<=> x - 1 = -1

<=> x = 0 (tmđk)

Vậy x = 0

11 tháng 7 2019

Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)

Nhân theo vế: 

\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)

Thay vào từng trường hợp tìm x;y;z

Áp dụng bđt Bunhiacopski ta có

\(A=3\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}\right)\ge3.\frac{\left(a+b\right)^2}{2+a+b}=\frac{3}{3}=1.\)

Dấu ''='' xảy ra khi \(a=b=\frac{1}{2}\)

30 tháng 4 2019

ko ph đây là svac à

1 tháng 7 2017

a ) MTC : \(2x\left(x+3\right)\left(x-3\right)\)

\(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)

\(\frac{3-2x}{x^2-9}=\frac{3-2x}{\left(x-3\right)\left(x+3\right)}=\frac{2x\left(3-2x\right)}{2x\left(x+3\right)\left(x-3\right)}\)

b ) MTC : \(2\left(-x\right)\left(x-1\right)^2\)

\(\frac{2x-1}{x-x^2}=\frac{2x-1}{-x\left(x-1\right)}=\frac{2\left(2x-1\right)\left(x-1\right)}{2\left(-x\right)\left(x-1\right)^2}\)

\(\frac{x+1}{2-4x+2x^2}=\frac{x+1}{2\left(x^2-2x+1\right)}=\frac{-x\left(x+1\right)}{2\left(-x\right)\left(x-1\right)^2}\)