Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4,\(6x^2+10x-9x-15=6x^2+12x\)
\(6x^2+x-15-6x^2-12x\) =0
11x-15=0
11x=15
x=\(\frac{15}{11}\)
vậy.......
hc tốt
\(a,\left(2x-3\right)\left(3x+5\right)+3=6x\left(x+2\right)\)
\(\Rightarrow6x^2+2x-15+3=6x^2+12x\)
\(\Rightarrow10x=-12\)
\(\Rightarrow x=-\frac{5}{7}\)
\(b,\)Sai đề không ?
THoi giải lại z :
\(2x^2-\left(x+1\right)\left(x-2\right)-x\left(x+1\right)+5\)
\(=2x^2-x^2+2x-x+2-x^2-x+5\)
\(=2+5\)
\(=7\)
Vậy GTBT ko phụ thuộc vào giá trị biến x
\(2x^2-\left(x+1\right)\left(x-2\right)-x\left(x+1\right)+5\)
\(=2x^2-x^2+2x-x+2-x^2-x+5\)
\(=\left(2x^2-x^2-x^2\right)+\left(-2x+x+x\right)-2+5\)
\(=2+5=7\)
Vậy GTBT ko phụ thuộc vào giá trị của biến x
\(D=\left(3x+2\right)^2-\left(3x+2\right)\left(3x-2\right)-6x\)
\(\Leftrightarrow D=\left(3x+2\right)\left(3x+2-3x+2\right)-6x\)
\(\Leftrightarrow D=4\left(3x+2\right)-6x\)
\(\Leftrightarrow D=12x+8-6x\)
\(\Leftrightarrow D=6x+8\)
Vậy giá trị của D phụ thuộc vào giá trị của biến x
a) 3x2 - 15x3 = 3x2.( 1 - 5x )
b) x.( 2x - 3 ) + y.( 3 - 2x ) = x.( 2x - 3 ) - y.( 2x - 3 ) = ( 2x - 3 ).( x - y )
c) ( 5x - y )2 - 4x2 = ( 5x - y )2 - ( 2x )2 = ( 5x - y - 2x ).( 5x - y + 2x ) = ( 3x - y ).( 7x - y )
d) x2 - 9y2 + 4 - 4x = ( x2 - 4x + 4 ) - 9y2 = ( x - 2 )2 - ( 3y )2 = ( x - 2 - 3y ).( x - 2 + 3y )
TL:
\(a,1-2m+m^2-x^2-4x-4\)
\(=\left(m-1\right)^2-\left(x-2\right)^2\)
\(=\left(m+x-3\right)\left(m-x+1\right)\)
Bài 1:
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Bài 2:
đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)
Xét BT trái ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+5}\)
\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)
GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến
=> đpcm
Bài 1.
( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )
= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
Bài 2. ĐKXĐ tự ghi nhé :))
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)
\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)
=> đpcm
a/ Đkxđ: \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
Vậy phân thức được xác định khi \(\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
b/ \(A=\left[1+\frac{1}{x}+\frac{2}{x+1}\left(1+\frac{1}{x}\right)\right]:\frac{x^3+27}{2x}\)
\(=\left[1+\frac{1}{x}+\frac{2}{x+1}+\frac{2}{\left(x+1\right)x}\right]:\frac{\left(x+3\right)\left(x^2-3x+9\right)}{2x}\)
\(=\left[\frac{x\left(x+1\right)+\left(x+1\right)+2x+2}{\left(x+1\right)x}\right].\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\frac{x^2+4x+3}{\left(x+1\right)x}.\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}=\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)x}.\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\frac{2}{x^2-3x+9}\)
\(5,\)\(\frac{1}{5}x\left(10x-15\right)-2x\left(x-5\right)+7x\)
\(=2x^2-3x+-2x^2+10x-7x\)
\(=0\)
\(\Rightarrow\)Giá trị biểu thức không phụ thuộc vào biến x
\(6,\)\(F=5\left(x^2-3x\right)-x\left(3-5x\right)+18x+3\)
\(=5x^2-15x-3x-5x^2+18x+3\)
\(=3\)
Vậy giá trị biểu thức không phụ thuộc vào biến x
( À có một số chỗ mình phải sửa đề mới đúng đó. Cậu coi lại giùm mình nha )