Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\left\{-\frac{1}{2};\frac{1}{2};-1\right\}\)
\(B=\left(\frac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\frac{4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\left(\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)
\(=\frac{\left(2x^2+3x+1\right)}{\left(2x+1\right)\left(2x-1\right)}.\frac{\left(2x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)\left(2x+1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^2-x+1}\)
a) A có nghĩa <=> \(\left\{{}\begin{matrix}2x-2\ne0\\2-2x^2\ne0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}x-1\ne0\\\left(1-x\right)\left(x+1\right)\ne0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x\ne1\\x\ne\pm1\end{matrix}\right.\)
b) Ta có:
A = \(\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
A = \(\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x^2-1\right)}\)
A = \(\frac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
A = \(\frac{x^2+x-x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
A = \(\frac{x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{1}{2\left(x-1\right)}\)
c) A = -1/2
<=> \(\frac{1}{2\left(x-1\right)}=-\frac{1}{2}\)
<=> 2(x - 1) = -2
<=> x - 1 = -1
<=> x = 0 (tmđk)
Vậy x = 0
Mình nghĩ bạn viết hơi sai đề bài.
\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)
Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)
\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)
Khi đó:
\(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)
\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)
\(5,\)\(\frac{1}{5}x\left(10x-15\right)-2x\left(x-5\right)+7x\)
\(=2x^2-3x+-2x^2+10x-7x\)
\(=0\)
\(\Rightarrow\)Giá trị biểu thức không phụ thuộc vào biến x
\(6,\)\(F=5\left(x^2-3x\right)-x\left(3-5x\right)+18x+3\)
\(=5x^2-15x-3x-5x^2+18x+3\)
\(=3\)
Vậy giá trị biểu thức không phụ thuộc vào biến x
( À có một số chỗ mình phải sửa đề mới đúng đó. Cậu coi lại giùm mình nha )
a) ĐKXĐ: \(x\ne-1;0;1.\)Ta có:
\(A=\left[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\)
\(=\left[\frac{2}{\left(x+1\right)^3}\cdot\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}\cdot\frac{x^2+1}{x^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\left[\frac{2}{x\left(x+1\right)^2}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\left[\frac{2x}{x^2\left(x+1\right)^2}+\frac{x^2+1}{x^2\left(x+1\right)^2}\right]\cdot\frac{x^3}{x-1}\)
\(=\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\cdot\frac{x^3}{x-1}\)
\(=\frac{\left(x+1\right)^2\cdot x}{\left(x+1\right)^2\left(x-1\right)}=\frac{x}{x-1}.\)
Vậy \(A=\frac{x}{x-1}\)với \(x\ne-1;0;1.\)
b) A < 1 \(\Leftrightarrow\frac{x}{x-1}< 1\Leftrightarrow\frac{x}{x-1}-1< 0\Leftrightarrow\frac{x}{x-1}-\frac{x-1}{x-1}< 0\)\(\Leftrightarrow\frac{1}{x-1}< 0\)
\(\Leftrightarrow x-1< 0\)(do 1 > 0)\(\Leftrightarrow x< 1.\)
Kết hợp ĐKXĐ, A < 1 khi \(x< 1\)và \(x\ne-1;0.\)
c) \(A\inℤ\Leftrightarrow\frac{x}{x-1}\inℤ.\)Mà \(x\inℤ\)\(\Rightarrow x⋮\left(x-1\right)\Rightarrow\left(x-1+1\right)⋮\left(x-1\right)\Rightarrow1⋮\left(x-1\right)\Rightarrow\left(x-1\right)\inƯ\left(1\right)=\left\{1;-1\right\}.\)Ta lập bảng sau:
\(x-1\) | 1 | -1 |
\(x\) | 2 | 0 |
Kết luận | x thoả mãn ĐKXĐ | x không thoả mãn ĐKXĐ |
Vậy để A nguyên thì x = 2.
\(A=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\left(\frac{x^2+1-2x}{x^2+1}\right)\)
\(A=\left(\frac{1}{x-1}-\frac{2x}{\left(x-1\right)\left(x^2+1\right)}\right).\frac{x^2+1}{x^2+1-2x}\)
\(A=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\frac{x^2+1}{x^2+1-2x}\)
\(A=\frac{1}{x-1}\)
câu a) mẫu chung: \(x^3x^2\left(x-1\right)^2\) hơi dài nên mk ko làm ^_^
b)
\(=\frac{xy\left(a-b\right)+\left(x-a\right)\left(y-a\right)b-\left(x-b\right)\left(y-b\right)a}{ab\left(a-b\right)}\)
\(=\frac{xya-xyb+bxy-abx-aby+a^2b-axy+axb+aby-ab^2}{ab\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)}{ab\left(a-b\right)}=1\)
a/ Đkxđ: \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
Vậy phân thức được xác định khi \(\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
b/ \(A=\left[1+\frac{1}{x}+\frac{2}{x+1}\left(1+\frac{1}{x}\right)\right]:\frac{x^3+27}{2x}\)
\(=\left[1+\frac{1}{x}+\frac{2}{x+1}+\frac{2}{\left(x+1\right)x}\right]:\frac{\left(x+3\right)\left(x^2-3x+9\right)}{2x}\)
\(=\left[\frac{x\left(x+1\right)+\left(x+1\right)+2x+2}{\left(x+1\right)x}\right].\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\frac{x^2+4x+3}{\left(x+1\right)x}.\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}=\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)x}.\frac{2x}{\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\frac{2}{x^2-3x+9}\)
thk bn nhe