Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)
+) \(\frac{y+z}{x}=2\)
=> y+z=2x
+) \(\frac{x+z}{y}=2\)
=>x+z=2y
+)\(\frac{x+y}{z}=2\)
=> x+y=2z
Mà B= ( 1+x/y)(1+y/z) (1+z/x)
B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
B= \(\frac{2z.2x.2y}{xyz}\)
B= 8
~ Chúc bạn học tốt ~
Tích và kết bạn với mình nha!
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Lại có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
(+) Xét x + y + z \(\ne\) 0
Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)
Ta có : \(\left(x-3\right)^{2012}\ge0\) với mọi x
\(\left(3y-12\right)^{2014}\ge0\) với mọi y
=> \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\) Với mọi x, y
Để \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)
=> \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)
=> \(\left(x-3\right)^{2012}=0\) Và \(\left(3y-12\right)^{2014}=0\)
=> \(x-3=0\) Và \(3y-12=0\)
=> \(x=3\) Và \(3y=12\)
=> \(x=3\) Và \(y=4\)
Vậy cặp số (x;y) thỏa mãn là (3;4)
1.\(x\left(x+y\right)=-45;y\left(x+y\right)=5\Rightarrow\left(x+y\right)\left(x+y\right)=-45+5=-40\Rightarrow\left(x+y\right)^2=-40\Rightarrow\left(x+y\right)\varepsilon\phi\Rightarrow x,y\varepsilon\phi\)
Ta có : \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(\Rightarrow\left|x-5\right|+\left|1-x\right|\ge4\left(1\right)\)
Ta lại có : \(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+3\ge3\)
\(\Rightarrow\frac{1}{\left|y+1\right|+3}\le\frac{1}{3}\)hay \(\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\left(2\right)\)
Theo đề ra ta có : \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\left(3\right)\)
Từ (1) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi :
\(\left(x-5\right)\left(1-x\right)=0\Leftrightarrow1\le x\le5\)
Từ (2) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi :
\(\frac{12}{\left|y+1\right|+3}=4\Leftrightarrow\left|y+1\right|+3=3\)
\(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
Vậy : \(x\in\left\{1;2;3;4;5\right\};y=\left(-1\right)\)
\(\text{Ta có:}\left(x+2019\right)^{2018}\ge0với\forall x\)
\(|y-2020|\ge0với\forall y\)
\(\Rightarrow\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|\ge0với\forall x,y\)
\(\text{Mà }\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|=0\)\(\text{(Theo đề bài)}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2019\right)^{2018}=0\\|y-2020|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2019=0\\y-2020=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=-2019\\y=2020\end{cases}}\)
\(\Rightarrow M=x+y=-2019+2020=1\)
x(x+y)=-45 (1)
y(x+y)=5 (2)
cộng (1) với (2),vế theo vế ta đc:
x(x+y)+y(x+y)=-45+5=-40
=>(x+y)^2=-40
vì (x+y)^2>0;-40<0
=>ko tìm đc cặp (x;y) thỏa mãn
=>số cặp (x;y) thỏa mãn là 0
tik nhé