K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

1.

A=19^5^1^8^9^0+2^9^1^9^6^9

Ta luôn có 1a=1 với a là số nguyên dương

=>19^5^1^8^9^0=195 và 2^9^1^9^6^9=29

=>A=195+29=(192)2.19+(24)2.2=(...1)2.19+(...6)2.2=...1.19+...6.2=...1

Vậy A có tận cung là 1.

2.

B=1/3+1/32+...+1/32005

3B=1+1/3+1/32+...+1/32004

3B-B=1-1/32005

2B=1-1/32005<1

=>2B<1=>B<1/2

Vậy B<1/2.

.

.

10 tháng 2 2016

1) Ta có:

\(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}\)

Mà 195=194+1=...1.19=...19

      29=22.4+1=...6 .2=...2

=>A=...19 + ...2...1

Vậy A có chữ số tận cùng là 1

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
20 tháng 7 2019

Bài 2 

| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8

=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)

=> | x - \(\frac{1}{3}\)| = - 3,6

=> x - \(\frac{1}{3}\)= -3,6

=> x = -3,6 + \(\frac{1}{3}\)

=> x = \(\frac{-49}{15}\)

21 tháng 7 2019

Bài 3 :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)

Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)

Tương tự : \(a_1=a_2=....=a_9=10\)

8 tháng 9 2019

Dùng tích chất kết hợp cho nó lẹ

a/\(\left(\frac{-2}{3}+\frac{3}{7}\right):\frac{4}{5}+\left(\frac{-1}{3}+\frac{4}{7}\right):\frac{4}{5}=\left(\frac{-2}{3}+\frac{3}{7}+\frac{-1}{3}+\frac{4}{7}\right):\frac{4}{5}=\left(-1+1\right):\frac{4}{5}=0\)

b/\(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac{5}{9}:\left(\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}+\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\left(\frac{-3}{22}+\frac{-3}{5}\right)=\frac{-5}{3\left(\frac{1}{22}+\frac{1}{5}\right)}=\frac{-550}{81}\)

8 tháng 9 2019

Mà hình như câu b mình làm sai

b/\(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac{5}{9}:\left(\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\frac{-3}{22}+\frac{5}{9}:\frac{-3}{5}=\frac{5.22}{9.-3}+\frac{5.5}{9.-3}=\frac{-\left(5.22+5.5\right)}{27}=-5\)
 

18 tháng 7 2019

                                                                                   Bài giải

                                   Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)     ;    \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)        ; ..... ;             \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\)        \(^{\left(1\right)}\)

                        Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\)          ;         \(\frac{1}{3^2}>\frac{1}{3\cdot4}\)        ; ..... ;               \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)         \(^{\left(2\right)}\)       

Từ \(^{\left(1\right)}\) và \(^2\) 

       \(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\)      \(\left(ĐPCM\right)\)

18 tháng 7 2019

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

              \(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)  

              \(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)

              \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

              \(=1-\frac{1}{9}=\frac{8}{9}\)

\(\Rightarrow A< \frac{8}{9}\left(1\right)\)

Ta có:    \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)

                 \(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)

                 \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

                 \(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow A>\frac{2}{5}\left(2\right)\)

Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)

Các bạn nhớ k đúng mình nha (nếu đúng)

2 tháng 7 2019

a, \(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)

\(=\frac{-5}{9}.\left(\frac{3}{10}-\frac{4}{10}\right)\)

\(=\frac{-5}{9}.\frac{-1}{10}\)

\(=\frac{5}{90}\)

\(=\frac{1}{18}\)

b,\(\frac{2}{3}+\frac{-1}{3}+\frac{7}{15}\)

\(=\frac{10}{15}-\frac{5}{15}+\frac{7}{15}\)

\(=\frac{12}{15}\)

\(=\frac{4}{5}\)

c, \(\frac{3}{8}.3\frac{1}{3}\)

\(=\frac{3}{8}.\frac{10}{3}\)

\(=\frac{10}{8}\)

\(=\frac{5}{4}\)

d, \(\frac{-3}{5}+0,8.\left(-7\frac{1}{2}\right)\)

\(=\frac{-3}{5}+\frac{4}{5}.\frac{-15}{2}\)

\(=\frac{-3}{5}+\frac{-60}{10}\)

\(=\frac{-3}{5}+\frac{-30}{5}\)

\(=\frac{-33}{5}\)

e, \(\frac{2}{5}.8\frac{1}{3}+1\frac{2}{3}.\frac{2}{5}\)

\(=\frac{2}{5}.\left(8\frac{1}{3}+1\frac{2}{3}\right)\)

\(=\frac{2}{5}.10\)

\(=4\)

f, \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)

\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)

\(=\frac{3}{7}.-14\)

\(=-6\)

~Study well~

#KSJ