Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(x^2=t\Rightarrow t^2-2(m^2+2)t+m^4+3=0\)
Để pt ban đầu có 4 nghiệm $x_1,x_2,x_3,x_4$ thì pt \(t^2-2(m^2+2)t+m^4+3=0\) phải có hai nghiệm dương
Điều này xảy ra khi:
\(\left\{\begin{matrix} \Delta'=(m^2+2)^2-(m^4+3)>0\\ t_1+t_2=2(m^2+2)>0\\ t_1t_2=m^4+3>0\end{matrix}\right.\) \(\Leftrightarrow \forall m\in\mathbb{R}\)
Khi đó , pt ban đầu có các nghiệm \(x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}\)
Suy ra:
\(x_1^2+x_2^2+x_3^2+x_4^2+x_1x_2x_3x_4=11\)
\(\Leftrightarrow t_1+t_1+t_2+t_2+(-t_1)(-t_2)=11\)
\(\Leftrightarrow 2(t_1+t_2)+t_1t_2=11\)
\(\Leftrightarrow 4(m^2+2)+m^4+3=11\)
\(\Leftrightarrow m^4+4m^2=0\)
\(\Leftrightarrow m=0\)
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-7\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=3^2+2.7=23\)
\(B^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=3^2+4.7=37\Rightarrow B=\sqrt{37}\)
\(C=\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{3-2}{-7-3+1}=-\frac{1}{9}\)
\(D=10x_1x_2+3\left(x^2_1+x^2_2\right)=4x_1x_2+3\left(x_1+x_2\right)^2=-28+27=-1\)
\(E=\left(x_1+x_2\right)\left(x_1^2+x_2^2-3x_1x_2\right)=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=90\)
\(F=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2=431\)
1/ \(x^3-5x^2+5x+2+2mx-4m=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x-1\right)+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+2m-1\right)=0\)
Để pt có 3 nghiệm phân biệt thì \(x^2-3x+2m-1=0\) (1) có 2 nghiệm phân biệt khác 2
\(\Rightarrow\Delta=9-4\left(2m-1\right)=13-8m>0\Rightarrow m< \dfrac{13}{8};m\ne\dfrac{3}{2}\)
\(x_1^2+x^2_2+x^2_3=11\Leftrightarrow x_1^2+x_2^2=7\) với \(x_1;x_2\) là 2 nghiệm của (1)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\Leftrightarrow9-2\left(2m-1\right)=7\)
\(\Leftrightarrow2m-1=1\Rightarrow m=1\)
2/ Do gõ \(x_1;x_2\) lại thêm mũ rất mệt, nên ta đặt \(x_1=a;x_2=b\) gõ cho nhanh với \(\left\{{}\begin{matrix}a+b=x_1+x_2=2\\ab=x_1x_2=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=\left(a+b\right)^2-2ab=12\\a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=32\\a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=112\end{matrix}\right.\)
\(A=a^7+b^7=\left(a^6+b^6\right)\left(a+b\right)-ab\left(a^5+b^5\right)\)
\(\)\(=2\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)+4\left[\left(a^4+b^4\right)\left(a+b\right)-ab\left(a^3+b^3\right)\right]\)
\(=2.12\left(112-\left(-4\right)^2\right)+4\left[112.2-\left(-4\right).32\right]\)
\(=3712\)